পর্রিবেশ বিজ্ঞান সার ব্যবহার নির্দ্রশনা

$\mathrm{O}=\mathrm{C}-\mathrm{NH}_{2}$ $\stackrel{+}{1}$

মোঃ সদর্রুল অমিন

পরিবেশ বিজ্ঞান : সার ব্যর্রহার নির্দেশনা

ড. মোঃ সদরুল আমিন
প্রফেসর
হাজী মোহাম্মদ দানেশ কৃষি কন্লজ
দিনাজ্পুর

বাংলা একাড্মেী ঢাকা

পরিবেশ বিজ্ঞান : সার ব্যবহার নির্দেশনা (কৃষি পরিবেশ বিষ্ঞান : সার প্রয়োগের নির্দেশনা)

প্রথম প্রকাশ
জৈৈ্ঠা ১80৫/মে ১৯৯৮

বা/এ ৩৭৭৯
(৯৭-৯৮ পাঠ্যপুস্তক : জীকৃচচ : ১৩)

মুদ্রণ সংখ্যা ১২৫০
পাগ্ডুলিপি প্রণয়ন $ও$ মুদ্রণ তত্ত্বাবধান
জীববিজ্ঞান, কৃষিবিজ্ঞান ও চিকিৎসাবিদ্যা টপবিভাগ
জীক্চি ২৫৪

প্রকাশক
গোলাম মঈঈনউদ্দিন
পরিচালক
পাঠ্যপুস্তক বিডাগ
বাং্লা একসডেমী ঢাকা ১০০০

মুদ্রুক
ওবায়দুল ইসলাম
ব্যবস্থাপক
বাংলা এ্রকডেমী প্রেস ঢাকা

প্রচ্ছদ
মোহাম্মদ তাজুল ই্সলাম

মুল্য

এ্শণ টাকা মাত্র

PARIBESH BIJNAN : SHAR BABOHAR NIRDESONA (Environmental Science Indications of Fertilizer Application) by Dr. Md. Sadrul Amin. Published b Gholam Moyenuddin. Director, Texbook Division. Bangla Academy. Dhak 1000. Bangladesh. First Edition : May 1998. Price: Taka 100.00 only.

ISBN 984-07-3747-3

উৎসর্গ
সার ব্যবহারকারী কৃষকদের উদ্দেশে

ভূমিকা

 कार्गकमण বৃদ্ধির জना কৃষি গবেষণা जোরদার কয়া হছ্ছে। সার সস্পকে এস্ গবেষণার

সার এঝটি রাসায়নিক দ্র্য। সঠিক ব্যহহর না করা হলে সার দ্র্য নানাডাবে মৃত্তিক্ ও

 সেচ, BARC-র কাছে বিলমভাবে কৃত্ঞ।

 সার সুপারিশ প্রদান করা সষ্য হরে বলে আশা করি।

ছাজী মাহাশ্মদ দানেশ কৃষি কবলেজ

সূচিপত্র

প্রথম অধ্যায় : সার ব্যবহার ও শ্রেণিকরণ
৯-৭৩
১. সার ব্যবহারের বিবর্তন ৯
২. মৃত্তিকা, সার ও পরিবেশ ১০
৩. ন়াইট্রোজেন সার ও পরিবেশ রক্ষা ১৩
8. সার ও সারের কাজ ১৫
৫. সারের শ্রেণিকরণ ৬৮-

দ্বিতীয় অধ্যায় : সারের বৈশিষ্ঠ্য
১. রাসায়নিক সার 98
২. নাইট্রোজেন সার ৭৬
৩. ইউরিয়া সার ৭৯
8. এমোনিয়াম সার ৮২
৫. ফসফরাস সার ৮৬
৬. পটাশিয়াম সার ৯০
৭. ফ্রিট ও চিলেট সার ৯৪

ত্ততীয় অধ্যায় : সার ব্যবহার নীতিমালা
১. রাসায়নিক সারের ভৌত প্রকৃতি ও গ্রেড ৯৭
২. মিশ্র সার ১oo
৩. সার প্রয়োগ পদ্ধতি ১০৩
8. কम্পোশ্ট সার ১২৩

ब. সার প্রয়োগের মূলনীতি ১২৯
৬. মৃত্তিকা পরীক্ষা ১৩৫

৮. নাইछেজেন সার ১৩৭
৯. মৃত্তিকার অন্যান্য উপাদান :৩৯

চত্থ্থ অধ্যায় : মাঠ ফসন্লে সার প্রয়োগ
১. মাঠ ফসলन সার প্রয়োগের নীতিমালা ১৪১
২. মাঠ ফসল্লে সার প্রয়াগ ১৪১

ধান ১৪১ ; গম ১৪৮- বার্লি ১৪৯; চিনা ১৫১; কাউন ১৫২; সরগাম ১৫৪; ভুট্টা ১৫৫; মিষ্টি আলু ১৫৭; গোল আলু ১৫৮; আখ ১৮০; তামাক ১৬১; পাট ১৬৩; শন পাট ১৬৬; মেস্তা ১৬৭; কেনাফ ১৬৯; তুলা ১৭0 ; খেসারি ১৭২; মসুর ১৭৩; ছোলা ১৭৪ ; মুগকলাই ১৭৬ ; মাসকলাই ১৭৭; মটর ১৭৯; অড়হর ১৮১; গো-মটর ১৮২; সরিষা ১৮৪; তিল ১৮৬ ; তিসি ১৮৭; সৃর্যমুখী ১৮৯ ; সয়াবিন ১৯০ ; কুসুমযूল ১৯২; চীনাবাদাম ১৯৩; পান ১৯৫।

পঞ্চম অধ্যায় : শাক-সবজিতে সার প্রয়োগ

১. সাধারণ বিষয়াবলী ১৯৮
২. শাকু-সবজিতে সার প্রয়োগ ২০০

শুঁইশাক ও লাউ-কুমড়া ২০০; লালশাক, ডাঁটা শাক, পালং শাক ও পাট শাক ২০১; চীনা শাক ও বাটি শাক ২০৪; কলমী শাক ২০৫; লেটুস, পেঁয়াজ ও গাজর ২০৫; মূলা ২০৭; ফুলকপি, ব্রোকোলি ২০৮; বাঁধাকপি ২০৯ ; লাউ, চালকুমড়া, মিষ্টি কুমড়া, শসা, স্কোয়াশ, ক্ষিরা ২১০; শিম, বরবটি, মটরআুঁটি ২১১; করলা, ঝিজ্গা, চিচিপ্গা, ধুন্দুল, কাকরোল ২১২; ঢেঁড়শ ও চুকাই ২১৫; টমেটো ২১৬; বেগুন ২১৭; মানকচু ও ওলকচু ২১৮; পেয়াজ ২১৯ ; রসুন ২২১; মরিচ ২২১ ; আদা ২২৩; হন্নুদ ২২৩; ধনে ২২৫।

ষষ্ঠ অধ্যায় : ফল গাছ্ সার প্রয়োগ

২২৭-২8ง
১. ফল গাছে সার প্রয়োগের সাধারণ নীতিমালা ২২৭
২. সারের পরিমাণ ও প্রয়োগ পদ্ধতি ২২৭

পেয়ারা. ২২৭; পেঁপে ২২৯ ; লেবু, মান্টা, কমলা, কিন্না ২৩০; ডালিম ২৩২; কলা ২৩৩; নারকেল ২৩৪; আঙুর ২৩৬; আনারস ২৩৯; আম ২৩৯ ; কাঁঠাল ২৪১ ; সুপারি ২৪২।

সপ্ত্ম অধ্যায় : ফুন গাছছ সার প্রয়োগ

১. ফুল গাছে সার প্রয়োগের সাধারণ নীতিমালা ২৪৪
২. ফুল গাছে প্রয়োগর জন্য সাররর পরিমাণ ও প্রয়োগ পদ্ধতি ২88 গোলাপ ২৪৫; রজনীগন্ধা ২৪৬ ; ফুল গাছ ২৪৮ ; মৌসুমী ফুল ২৪৯। তথ্যপঞ্জি ২৭০।

প্রথম ডষ্যায়

সার ব্যবহার ও শ্রেণিকরণ

১। সার ব্যবহারের বিবর্তন

মানুষ কখन প্রথম ফসল চাষ শুরু করেছিল তার কোনো সঠিক সময় জানা নেই। তবে এটি. অবশ্যই ত্রিষ্ট জন্মের কয়েক হাজার বছর পূর্বে হতে পারে। ঐতিহাসিকগণের মতে তখন থেকে ‘ভূমির উর্বরতা’ বিষয়ে মানুষের ধারণা জন্ম্মেিল। ইরাকের টাইগ্রিস ও ইউফ্রেটিিস নদীর মধ্যবর্তী মেসোপোটেমিয়া এলাকার মৃত্তিকার উর্বরতা বেশি ছিল বলে তখनই মানুষ তা জানত়ো। গ্রিক ঐতিহসিক হিরোডোটাসের ভ্রমণ কাহিনীতে মেসোপোটেমিয়া এলাকার ফসল উৎপাদন ও উর্বরতার বিষয় উল্লেখ আছে। श্রিষ্ট জন্মের প্রায় ৩00 বছর আগে ‘থিও্রাসটাস’ এর লেখায় উল্লেখ আছে টাইগ্রিস অববাহিকার 'बমিতে পানি প্রবেলের সুযোগ দিলে ও আটকে রাখলে পলি পতনে ভূমির উর্বরতা বাড়তো এবং ফসলের ফলন বাড়তো। অনেক প্রাচীন লেখায় জৈব সার ও পশু-মলের উল্লেথ আছে।

এলিসের কিংবদত্তী রাজা অগিয়াসের ৩০০০টি গবাদি পশুর একটি গোয়াল ঘর ছিল যা ৩০ বছর যাবৎ পরিষ্কার করা হচ্ছিল না। রাজা অগিয়াস তখন হারকিউলিসের সাথে চুক্তি করলো যে, হারকিউলিস যদি এই গোবর সরিয়ে দেয় তবে তাকে ৩০০টি গরু দিয়ে দেওয়া হবে। কথা মতো হারকিউলিস গোবর তুলে নিয়ে জমিতে প্রয়োগ করে। এতে ফস্সলের ফলন বেড়ে গিয়েছিল।

অন্ধ কবি হোমার তথা ওডিসি কবিতার পটভূমিতে উল্লেখ আছে যে, তাঁর বাবার আঙুর বাগান ও কুঞ্জেবনে জৈব সার ব্যবহার করা হতো। এটি খ্রিষ্টপূর্ব প্রায় ৯০০-৭০০ বছরের কথা। খ্রিষ্টপূর্ব ৩৭২-২৪৭ সময়ে থিওফ্রাসটাসের সুপারিশে উল্লেখ ছিল যে, উর্বর জমিতে জৈব সার ও সবুজ সার প্রয়োগ কম করতে হবে এবং গোয়াল ঘরে খড় বিছিয়ে দিতে হবে যাতে পশুর মল-মৃত্র তাতে শোষিত হয়। তখ্গন এথেন্সের বিভিন্ন বাগানে নিয়মিত শহর সিউয়়ে ব্যবহার করা হতো। আরও বিশ্বাস করা হয় যে, তখন সিউয়েজ সার হিসেবে কৃষকের নিকট বিক্রি করা হতো। থিওফ্রাসটাসের অভিমত ছিল যে, মনুষ্য মল সবচচয়ে ভাল সার। অবশ্য পরে প্রাচীন রোমান কৃষি লেখক ভ্যারোর লেখায় হুসমুরগির বিষ্ঠা ভ়াল সার হিসেবে উল্লেখ আছে। প্রাচীন সাহিত্য ও সভ্যতার ইতিহাসে এভাবে জমিতে সার ব্যবহার স্বীকৃত হয়েছিল। সেই জৈব সার বর্তমানে রাসায়নিক সারে উন্নীত হয়েছে। 'সার ব্যবস্থাপনা’ একটি সুশহংখল বিজ্ঞান্ পরিণত হয়েছে। সার ব্যবহারের এসব গুরুত্ত সম্পর্কে ওমর ไৈয়াম, ভার্জিল, বাইবেল, জেনোফন, প্লিনি প্রমুখের লেখায় বিস্তর উল্লেখ ছিল। সারা বিশ্বের অনুরুপ বাং্লাদেশে কৃষি উৎপাদনেও

সার ব্যবহারের প্রয়োজনীয়তা বর্তমান শতকের শুরুতেই স্বীক্ত হয়। তখন দেশে জৈব সার হিসেবে গোবর ও কম্পোস্ট ব্যবহারের উপর ব্যাপক সম্প্রসারণ কাজ শুরু হয়। রাসায়নিক সারের ব্যবহার শুরু হয় মূলত যাটের দশকে। অর্থকরী ফসল ও ধানের জমিতে সীমিত পরিমাণ ইউরিয়া ও এমোনিয়াম সালফেট প্রয়োগের মাধ্যমে এই যাত্রা শুরু হয়। তখন এদেশের মৃত্তিকার স্বাভাবিক উর্বরতা কমে যাওয়ায় সারের বিষ্ঞান্থিত্তিক ব্যবহার নিশিতিত করার জন্য Soil Fertility and Soil Testing Institute（SFSTI） নামে একটি সংস্থা স্থাপন করা হয়। বাংলাদেশে আশির দশক থেকে অত্যত্ত দ্রুত হারে রাসায়নিক সারের ব্যবহার বাড়তে থাকে（সারণি ১）।

বর্তমানে বাংলাদেশ কৃষি গবেষণা পরিষদের নেত্ত্বে সারা দেশে বিভিন্ন ফসলে ব্যবशারের জন্য সার ব্যবহার নির্দেশিকা প্রণয়ন ও বিতরণ করা হচ্ছে। এদেশে বর্তমানে বিভিন্ন ফসলে বিভিন্ন ধরনের প্রায় ১৩ ধরনের সার দ্রব্য ব্যবহৃত হচ্ছে। সারগুলো হচ্ছে ১．ইউরিয়া，২．এমোনিয়াম সালফেট，৩．টिপল সুপার ফসফেট 8．সিঙ্গেল সুপার ফসফেট ৫．ডাই－এমোনিয়াম ফস্সেট，৬．মিউরেট অব পটাশ ৭．পটাশিয়াম সালফেট ৮． জিপসাম ৯．জ্ষিষ্ক সালফেট ১০．জিষ্ক অক্সিক্লোরাইড ১১．বোরাক্স ১২．গৌণ উপাদান সার এবং ১৩．বিভিন্ন সুষম সার। এসব সার যতো বৈষ্ঞেনিকভাবে ব্যবহার করা হরে， সার ব্যবহারে দিনে দিনে ততো সফলতা আসবে। এই গ্রন্হটি তাই এদেশে মাঠ পর্যায়ে বিষ্ঞানসশ্মত উপায়ে সার ব্যবহার বিষয়টি সামনে রেখে প্রনয়ন করা হয়েছে।

২। মৃত্তিকা，সার ও পর্রিবেশ

কৃষি উৎপাদন বাড়ানোর জন্য মৃত্তিকাতে পুষ্টি উপাদান সরবরাহকল্প্প সার ব্যবহারের বিষয়টি সকল যুগের চেয়ে বর্তমানে অধিকতর স্বীকৃত হয়েছে। কৃষকের মূল আকাক্ষ্কা হচ্ছে ফসল থেকে সর্বেচচ্চ ক্মতায় ফলন পাওয়া। সে জন্যই মৃত্তিকাতে সার প্রয়োগ করা দরকার। সার একটি রাসায়নিক দ্রব্য। জমিতে এর ব্যবহার সঠিক না হলে একদিকে উচ্চ ফলন পাওয়া যায় না，অন্যদদিকে পরিবেশ বিনষ্ট হয়। তাই সার ব্যবशার নির্বিম্ম করার জন্য সারা বিশ্বে সার ব্যবহার প্রযুক্তি উন্নয়নে গবেষণা চলছে। বিভিন্ন হিসেবে দেখা যায়， সারা বিশ্বে ১৯০০ সালের পূর্ববত্তী সময়ে কৃষি উৎপাদন বাড়ানোর জন্য কেবল আবাদী জমির পরিমাণ সম্প্রসারিত হয়েছে। সার ব্যবহার তেমন দৃষ্টি আকর্ষণ করে নাই। কিন্তু ক্রমান্বয়ে কৃষি জমির পরিমাণ কমতে থাকায়，সীমিত জমিতে অধিক ফলন প্রাপ্তির পদক্ষেপ হিসেবে সারের ব্যবহার বাড়তে থাকে। নিচের সারণিতে মার্কিন যুক্তরাষ্ট্রে ব্যবহৃত রাসায়নিক সারের পরিমাণ উপস্ছাপিত হলো।

সারাণ $~: ~ ম া র ্ ক ি ন ~ য ু ক ্ ত র া ষ ্ ট ্ ~ ব ্ য ব হ ু ত ~ র া স া য ় ন ি ক ~ স া র ে র ~ প র ি ম া ণ ~$

সাল	পুষ্টি উপাদান／সার（হাজ্রার টন）			
	নাইটুাজেন	ফসফেট	পটাশ	बোট
১৯8৯－৫0	৯৫	১৯৩o	3090	৩入৫ら
১৯৬8－৬区	8い0『		২৪২৪	১১২১৮
১৯৭২－৭৩	80゚め	く092	88\，	১৩৮২৩
১৯৮১－৮২	১১০৭৯	8৮－১b	くらさ8	くこくるこ

সারণণি ১ থেকে জানা যায় যে，যুক্তরাষ্ট্রে ১৯৫০ থেকে ১৯৮২ সাল পর্যন্ত রাসায়নিক সারের ব্যবহার বেড়েছে প্রায় সাড়̣ ৫ গুণ এবং নাইফাজেন সারের ব্যবহার বেড়েছে প্রায় সাড়ে ১১ গুণ। বর্তমানে সারের ব্যবহার যে বেড়েছে এতে কোনো সন্দেহ নেই। সার ব্যবহার বৃদ্ধির বিষয়টি সারা বিশ্বের জন্যই সত্য। নিচে কানাডায় ব্যবহৃত সারের ব্যবহার সম্পর্কিত তথ্য উল্লেথ করা হলো।

সারণি ২：আশির দশকে কানাডায় ব্যবহৃত সারের পরিমাণ

সাল	পুষ্টি উপাদান／সার（হাজার টন）			
	নাইট্রোজেন	ফসফেট	পটাশ	মোট
১৯৫৮－せ৯	৬২	28®	b－	र৯®
১৯৬৪－৬を	298	২৬৭	১২৩	（い）
১৯৭న－৭৩	820	$8 \bigcirc$ ¢	১৯る	jos s
১৯৮১－৮২	৯৫০	৫৮8	৩৫৫	১৮৮৯

উপরের সারণিতে দেখা যায় যে，কানাডায় ১৯৫৯ সাল থেকে ১৯৮২ সাল পর্যন্ত সারের ব্যবহার বেড়েছে প্রায় সাড়ে ৬ গুণ। এই সময়ের মধ্যে নাইট্রোজেন সারের ব্যবহার বেড়েছে প্রায় সাড়ে ১৫ গুণ। সার ব্যবহারের বৃদ্ধি হার অব্যাহত রয়েছে।

সার ব্যবহার সারা বিশ্বেই বেড়েছে এবং বাড়ছে। অধিক ফলন প্রাপ্তুর জন্যাই সারের ব্যবহার বাড়াতে হয়েছে। নিচের সারণিতে বিশ্বের কয়েকটি দেশে প্রতি হেক্টের জমিতে ব্যবशৃত সারের পরিমাণ উপস্থাপিত হলো।

সারণি ৩ ：বিশ্শের কয়েকটি দেশে ব্যবহৃত সারের পরিমাণ

লেশের নাম	$\begin{gathered} \text { সারের পরিমাণ } \\ \left(\mathrm{N}+\mathrm{P}_{2} \mathrm{O}_{5}+\mathrm{K}_{2} \mathrm{O}\right) \\ (\text { (েজি } / \text { 彖 } 2 \text {) }) \end{gathered}$	মাথাপিছু পরিমাণ（কেজি）
যুক্তরা৷্ট	गSV	จ०
সাবেক সাভিয়েত ইউনিয়ন	bs	90
বেলজিয়াম	800	80
ख्रान्म	008	208
পูর্ব জার্মানি	৩マ৫	ఎ৮
পকিম জর্মানি	89	『9
，ज्रिস	208	©
नেদারল্যান	q৮b	ง9
যুক্তরাজ্য	रล8	$\bigcirc 9$
কানাডা	8	bo
ব্রাজিল	৬b	08
পেরু	৩マ	\checkmark
बের্রিকো	बर	29
हौन	$\pm \boxed{18}$	28

ভারত	৩र	b
জাপান	৩৭২	১®
তুর্র	85	২৬
আলজেরিয়া	， 0 \}	১৩
দক্ষ্ষিণ আফ্রিকা＇	90	04
মিশর	200	১
অস্ট্রেলিয়｜	रb	$b<$
नিউজিল্যান্ড	১0১9	b－8
বাংলাদেশ	208	So

উৎস ：Fertilizer Year Book，Vol． 31 （FAO ১৯৮৫）

সারা বিশ্বে সারের ব্যবহার বাড়ছে। কৃষি উৎপাদন ঠিক রাখা এবং বাড়ানোর জন্য দিনে দিনে এই সারের ব্যবহার বাড়বে। কৃষি উৎপাদনের জন্য সার ব্যবহার খুবই গুরুত্বপূর্ণ। কারণ আধুনিক কৃষি ব্যবস্থায় ফসল পরিচর্যা বা ব্যবস্থাপনা বলতে প্রথমেই আসে সারের কথা। তারপর সার ব্যবহারের মাত্রা অনুসারে নির্ধারিত হয় অন্যান্য পরিচর্যার প্রতিপালন। সার না দেওয়া জমিতে কেউ উন্নত পরিচর্যা করতে চায় না বা পরিচর্যা করে পোষায় না।

বর্তমানে উন্নত ও উন্নয়নশীল দেশসমূহে সার ব্যবহারের অনুপাত নিম্নরূপ－
সারণি 8 ：উন্নত ও উন্নয়নশীল দেশে ব্যবহাত সারের অনুপাত

দেশ	সারের পরিমাণ（অনুপাত）		
	নাইটোজ্রেন（N）	ফ্স＜েট（P2O5）	পটাশ（ $\mathrm{K}_{2} \mathrm{O}$ ）
উন্নত দেশ	300	৬২	『9
উন্নয়নশীল দেশ	300	Vt	১৬

এই সারণি দেখে বোঝা যায় যে，উন্নয়নশীল দেশসমূহে সার ব্যবহার অনুপাতে সুষমতা কম।

জমিতে ব্যবহৃত সারের অনুপাত সুষম না হলে সময়ের ব্যবধানে মৃত্তিকার উর্বরতার অবক্ষয় ঘটে। পরিবেশ সুরক্ষার জন্য মৃত্তিকা ও সার ব্যবহারে সমন্বয়সাধন খুবই গুরুত্বপূর্ণ।

সারণি ৫ ：বিশ্বে সার ব্যবহারের ধারা

বছর	সারের পরিমাণ（নক্ষ টন）			
	নাইট্রোজেন	ফসফেট	পটাশ	মোট
১৯১৩	১O	b	१	২৮
১৯৩৯	र०	১区	২০	くも
১৯৫0	83	र区	$0 \mathbb{O}$	Sos
১৯৫৫	b）	\bigcirc	89	১৫J

সার ব্যবহার ও শ্রেণিকরণ
30

১৯৬০	308	80	90	২২০
১৯৬৫	398	৫৯	305	$\bigcirc 08$
১৯৭০	－0々	bo	১৩৯	৫ 28
১৯৭৫	৪২৩	১১O	১৯৮	90\％
১৯৮০	『१२	১৩O	২২৬	৯২৮
১৯৮৫	900	১৬২	২৮8	১594
১৯৯০	৯২৮	১৯৫	－8৯	38१२
১৯৯৫	১১৫O	200	8২২	১৮o৫
2000	১৩৯心	২१8	くOर	২১৭২
গড়	8 8®	วO¢	১৮৬	१8 Ч
অনুপাত	200	২৩	Q	

＊উৎস FAO．UNDP Estimate \＆Projection ১৯৯২ এর ভিত্তিতে প্রণীত।

৩। নাইট্রোজ্জেন সার ও পরিবেশ রক্ষা

নিচের সারণি শেকে একথা স্প্টভাবে বলা যায় বে কৃষি উৎপাদন হার ঠিক রাখা জন্য মৃত্তিকাতে অন্যান্য রাসায়নিক সারের চচ্যে নাইটাজেনষটিত রাসায়নিক সারের ব্যবशর ১৯৩৯ সালের তুলনায় ১৯৯০ সাল পর্যষ্ত আড়াই গ্ৰণেরও বেশি হারে ব্যবহার ক্রতে হয়েছে। ধারণা করা যায় আগামী ২০০০ সাল নগাদ একই হারে বৃদ্भি পাবে। এখানে ঊল্লেখযোগ্য যে，পরিবেশের বিবেেনার নাইট্রাজেনইটিত সার সবচেয়ে গুরুু্তপূণ্ণ। মৃত্তিকা，
 সর্বাপিক প্রভাবিত হয়। বর্তমানের এইসার ব্যবহার ধারা পরিবেশ রক্ষার ব্যাপারে অবশাই বিবেেনার বিষয়।

সারনি ৬ ：বিশ্বে ফসফেটট ও পটাশের তুননায় নাইট্রোেন সার ব্যবशারের অনুপাত
（FAO，UNDP， $3 \Delta-\leftarrow$ ）

বছর	ফসফেট $ও$ পটাশের গড় ব্যবহার সৃচক	নাইটোজ্জেনে ব্যবহার	বৃন্ধি হার（\％）
১৯৩৯－১৯৫৫	200	S08	300
১৯৬০－১৯৭০	200	২২৩	১৬
১৯৭৫－১৯৮৫	300	OOb	২৩o
১৯৯০－২000	200	ves	২৬২

বাল্লাদেলে সারের ব্যবহার দিন দিন বাড়ছছ। সারণি ৭ থেবে．সার ব্যবহারের ধারা বোঝা যারে।

সারণি १：বাংলাদেশে ব্যবহৃত সারের পরিমাণ（হাজার টন）BBS，১৯৯৪（সমাষ্ক পরিমাণ）

বছর	ইউরিয়া	টिএসপি	এমপি	অन्যाন্য	মোট
১৯৮b－bか	$330<$	8১৬	৯8	So	১いくb
১৯৮৯－৯০	১৩৬৭	8bs	১১৯	২१	১৯৯8
১৯৯০－৯১	১OくO	c ${ }^{\text {d }}$	১89	र৯	2030
১৯৯১－৯২	১৫৩২	8৫৭	১৩৬	Oर	र১৫৭
১৯৯২－৯৩	১৫৬b	8てく	১र०	500	২২৭৩
১৯৯৩－৯8	১৬৩o	৩২০	230	290	২২২৯

বাংলাদেশে সারের ব্যবহার শুরু হয় মূলত পঞ্চাশ দশকে। ত্বে ষাটের দশক থেকে তা দ্রুত বৃদ্ধি পেতে থাকে। বিশেষ করে ইউরিয়া সারের ব্যবহার খুবই দ্রুত বাড়ে，এখনো বাড়ছে। ফলে সারের ব্যবহার মাত্রার বা অনুপাতত সুষমতা বিঘ্নিত হয়।
নিচে বিভিন্ন বছরে ব্যবহৃতে সারের অনুপাত উল্gেখ করা হলো।
সারণি ৮ ：বাংলাদেশে ব্যবহৃত সারের অনুপাত（BBS）১৯৯৪（সমাষ্ক পরিমাণ）

বছর	নাইট্রোজন（N）	$\begin{aligned} & \text { ফসফেট } \\ & \left(\mathrm{P}_{2} \mathrm{O}_{5}\right) \\ & \hline \end{aligned}$	পটাশ（ $\mathrm{K}_{2} \mathrm{O}$ ）
১৯brb－b৯	১00	99	১）
১৯－৯－৯o	300	\bigcirc	১২
১৯৯০－৯১	300	৩৯	১৫
১৯৯১－৯২	300	$\bigcirc 0$	১২
১৯৯২－৯৩	300	Vo	SJ

সারা বিলেই সার ব্যবহার নিয়্যে গবেষণা এবং উন্নয়ন চলছু। পরিমাণের দিক থেকে প্রতি
 চীন। ভারত ও বাল্লাদেশে সারের ব্যবহার এখনো কম। তবে তাপপ্যপূর্ণ বিষয় হচ্চ পৃথিবীর প্রায় সব দেলেই সার ব্যবशারের কার্גকারিত বাড়ানো হয়েছে। যেমন মার্কিন यুক্ৰাঁ্ট্ট ১৯৬০ সালে ১ কেজি সারে ৯ কেজি ফসসল উৎপাদন হতে।। এই উৎপাদন ১৯৯০ সালে ৯ কেজি থেকে ৩৮ কেজিতে দাঁড়িয়েছে। চীন，জাপান，যুক্ত্রাজ্য，ফ্রাস্জ সব দেশেই প্রতি কেজি সারে ফলন কম－বেশি বেড়়ো কিন্তু বাংলাদhশে ত ২৫ কেজি থেবে কম্র গিয়্যে ১২ কেজিতে নেমে গেছে। অথ্থাৎ সারের অবক্ষয় ব্রে়ে গেছে（BBS，১৯৯৪）। সার একটি রাসায়নিক দ্রব্য। মৃত্তিকাত ব্যবशর করার পর এই সার গাছ কর্তৃক সময়মতো পরিশশাযিত না হলে এর অপচয় হয়। এই সার মৃত্তিকা ও নদী－নালা－হাওড়़র পানিতে মিশ্ গিয়ে জৈব পরিবেশ বিম্মিত করে। তাই বলা যায় সার ব্যযशার বিষয়টি সার্বিকভাবে পরিবেশ রক্ষার প্রল্নে খুবই গুরুত্পুণ্ণ।

সারণি ৯ : বিশ্বের কয়েকটি দেশে সার ব্যবহার, সারের কার্ষকারিতা ও ফসল উৎপাদন

দেশ	সার ব্যবহার (কেজি/হেক্টর/বছর)		সারের কার্যক্সরিতা (কেজি সার/কেজি উপাদান)		
	১৯৬০	১৯৯o	১৯৬০	১৯৯০	১৯৯২
বাংলাদেশ	8	308	২৫	১২	১े
हौन .	र৫	১৮o	3)	১O	>8
ভারত	২৫	৮-	गs	৯	>o
জাপান	र१०	800	b	20	गs
যুক্তরাষ্ট	80	500	৯	\bigcirc	৩৯
যুক্তরাজ্য	bo	-৮o	jo	38	2৫
ফ্রान्म	300	O৮O	৯.	১2	১O

উৎস: FAO, UNDP, ১৯৯৪.

8। সার ও সারের কাজ

সংক্ষেপে জমিতে ফসল উদ্ভিদের পুষ্টি উপাদানের অভাব বা ঘাটতি হলে বা আশংকা থাকলে তা পরিপূরণণে জন্য যেসব দ্রব্য প্রয়োগ করা হয় তাকে সার বলে। তবে সাররর সংজ্ঞা বিভিন্নভাবে ঊল্লেখ করা যেতে পারে। যেমন- উদ্ভিদের বৃদ্ধি নিশ্চিত করার জন্য এক বা একাধিক পুষ্টি উপাদান সরবরাহের জন্য মৃত্তিকাতে যে সকল প্রাকৃতিক দ্রব্য বা কল-কারখানায় প্রস্তুত অজৈব বা জৈব দ্রব্য জমিতে প্রয়োগ করা হয়় তাকে সার বনে। অবশ্য মৃত্তিকা পরিশোধনের উদ্দেশ্যে অর্থাৎ মৃত্তিকার অম্লত্ব বা ক্ষারত্ব দূরীকরণের জন্য কোনা দ্রব্য প্রয়োগ করা হল্লে তা সাধারণত প্রকৃত সার দ্রব্য হ্সিবেবে বিবেচিত হৃয় না। উদ্ভিদ তার স্বাভাবিক বৃদ্ধি ও উন্নয়নের জন্য মৃত্তিকা থেকে কমপক্ষে ১৪টি পুষ্টি উপাদান পরিশোষণ করে। প্রত্যেক উদ্ভিদের অত্যাবশ্যক উপাদানের পরিমাণ এবং উপাদানসমূহের পারস্পরিক অনুপাত ফসলে প্রজাতি বিশেষে ভিন্ন। যে মৃত্তিকাতে কোনো উদ্ভিদের পুষ্টি উপাদানসমূহ কাষ্খিত অনুপাতে থাকে না সেক্ষেত্রে বাইরে থেকে সার প্রয়োগের মাধ্যমে অনুপাতে সুষমতা আনয়ন করা হয়। এতে ফসলের উচ্চ ফলন নিচ্চিত হয়।

গাছের অত্যাবশ্যক মৃত্তিকাস্থ পুষ্টি উপাদানের নাম

মুখ্য উপাদান	গগীণ উপাদান
নাইট্রোজন	লোহ
एসফর়াস	জৈব ম্যাঙ্গানিজ
পটাশিয়াম	জিষ্ক বা দাত্তা
ক্যালসিয়াম	বোরন
ম্যাগনেশিয়াম	মলিবডডনাম
সালফার বা গন্ধক	কপার বা তামা ক্লোরিন কোবাল্ট

সাররর কাজ

সারের সংজ্ঞা থেকে এর কার্যাবলী সম্পর্কে ধারণা করা যায়। যাহোক, এখানে সারের বিস্তারিত কার্যাবলী উল্লেখ করা হলো।
১. মৃত্তিকাত্ত উদ্ভিদ পুষ্টির ঘাটতি উপাদান সরবরাহ করা : কোনো মৃত্তিকাতে নাইটোজেন বা ফসফরাসের ঘাটতি থাকলে তা ইউরিয়া বা টিএসপি সার প্রয়োগ করে পূরণ করা যায়।
২. সামগ্রিকভাবব মৃত্তিকার পুষ্টি উপাদান সরবরাহ বৃদ্ধি করা : কোনো জমিতে সার প্রয়োগ করা হলে সার্বিকভাবে মৃত্তিকার পুষ্টি সরবরাহ ক্ষমতা বাড়ে।
৩. ভূমির উর্বরতা বাড়ান্না : কোনো মৃত্তিকার উর্বরতা মান কম হলে বা মধ্যম হলে সার প্রয়োগের মাধ্যমে এর উর্বরতা মান উচ্চ পর্যায়ে উন্নত করা যায়।
8. ভূমির উর্বরতা সংরর্ষ্ণণ করা : পরপর ফসল উৎপাদনের ফলে উপ্ভিদ কর্তৃক পুষ্টি শোষণের ফলে অধিক উর্বর মৃত্তিকার উর্বরতা মানও দিনে দিনে কমে যায়। কিন্তু এসব জমিতে সঠঠিভাবে রাসায়নিক সার প্রয়োগের ফলে মৃত্তিকার বিদ্যমান উর্বরতা মান সংর্র্ষিত হ্য।
৫. ভূমির ফস্সল উৎপাদন ক্ষমতা বাড়ায় : মাটিতে সার প্রয়োগের ফলে ফসলের উৎপাদন বাড়ে। এইভাবে অথ্থাৎ ফসন্ল উৎপাদন বাড়ানোর মাধ্যমে ভূমির মোট বা বার্ষিক উৎপাদন ক্ষমতা বাড়ে।
৬. মৃত্তিকা দ্রবণ ও ভ্টীত গুণাবলী উক্নত করে : সার প্রয়োগের ফলে মৃত্তিকার দ্রবণের ভারসাম্য ঠিক থাকে। জৈব সার, টিএসপি প্রভৃতি সার মৃত্তিকার ভৌত গুণাবলী যথা সংযুতি উন্নত করে।

সার ব্যবহাররর প্রধান উদ্দেশ্য জমিতে উদ্ভিদের অত্যাবশ্যক পুষ্টি উপাদানসমূহ সরবরাহ করা। এমব পুষ্টি উপাদান গাছছ সুনির্দিষ্ট কাজ করে গাছছ পুষ্টিসাধন ঘটায়।

গাছ্রের কোনো পুষ্টি উপাদানের অভাব হলে গাছের পাতা, শিকড়, ফুলে ও ফলে নির্দি ধি ধরননের উপসর্গ বা সপুষ্টি লক্ষণ দেখায়। তাই গাছছ পুষ্টি উপাদানের ঘাটতিজনিত লক্ষণ দ্রেে সার দ্রব্য ব্ব্যবহার করা যায়।

এই অধ্যায়ে গাষ্ছঁ সার হিসেবে প্রদত্ত পুষ্টি উপাদানের প্রধান প্রধান কাজ ও এদের ঘাটতিতে প্রদর্শিত প্রধান প্রধান উপসর্গ চিত্রসহ (চিত্র ১ থেরে ৬১) উল্লেখ করা হলো।

ধান গাছছ নাইট্ট্রা:জননের প্রধান কাজ
ㄱ দ্রুত বৃদ্ধি হার নিশিত করা
ㄱ সকল পাতা সবুজ রাখা

- গাছছর কাঠামা বড় কর

[7 শিক্তি বিস্তার ঘাঁান্না।

 ঘার্টির লক্ষ্র
বড় পাতাসম্পন্ন গাত্ নাইট্টাজ্জেনর কাজ
ㄱ পাতা দ্রত বড় করা
(7) পাতার রe সবুজ রাখা
[] পাতার সং্থ্যা বাড়ানো
- \square ঢারা অन্প সময়ে বড় করা।

গম গা!ছ নইট্টাজ্জননর প্রধান কাজ

乙 প|তা বড় করা
[7 পাতা সবুজ রাখা

 লক্ষণ্রর বিবরণ

 था!

ㄱ एनन च্ৰ<ই কत্ম যায়

\square भाज बঢ़बর।

\square かाর রৎ मளুG রাখা
\square शाजा अढ़ 3 मसन রाशा।

\square গाए बौर्ष पেचाয়।

লক্ষণের বিবরণ

ㄱ. গাए बীव́ ३য়

(7) ц户नल কढ़ম যায়।

লশ্মণপর বিবরণ

 রিজ ধারূ ক (র)


```
লক্ষ্ণ\ বিবরুণ
```


লক্ষণণর বিবরণ

প্রতিকার : জামিত পানাশ সার প্রয়াগ কনর।

লক্ষণের বিবরণ
■ ᄃায়র পাতায় দাগ পা়゙
-

লস্ষ্ণর বিবরণ

17 भाजा मढ़ শूदित़ा যা?

লক্ষ্ণণর বিবরণ

লক্ষণণর বিবরণ

 লক্ষ্ণণর বিবরণ
 দাগর মর্য:

যাগ্যার মণ়া দেখায়
\square बय দিדক পাতা মরে ঝরে পড়़
17 ফ্সান্রর ফন্নন করু যায়।


```
\\र्j心ड़ नल्क.
নশ্ষঁ!পর বিবরূণ
```



```
    প\র* 小<ে যা\় 
```



```
    \!\! |
```



```
                                    ホ.<!
```


নক্ষ্ণপর বিবরূণ
干？！য় য！য়

 2． 6
ㄱ ケढा 斤िदन ज जल そे
 रा ऱ

লক্ষণর বিবরুণ

ᄀ গाएছর ফनन অढनক कल যায়
ᄀ গাছ్ অন্যান মড়ক রোগর গ্ররোপ রেড়় যায়।
প্রত্কার : জমিভে সুযমভারে পাাশ সার থ্রয়াগ করা

গোল आলুুত পটাশিয়ান্মর প্রবান কাজ্জ

\square	পাতাদ্রুত বড় কর়া				
7	ब\|খ	¢ পা	তা খাড়	ও সবুজ রাখ	
7					
7					
ㄱ					
7	অলু ব				
\square	আল্রু ফলन বাড়ান্\|।				

লক্ষ্ণপের বিবরণ
] निচের দিকের পাতয় গ্রথম লক্ষপ দেখা দেয়
\square পাতার बীর্য ও কিনারা হলডদ হতে থাকক

\square তীব্র ঘার্তিত সব পাতা হলদে ও বাদামি হাত থাকক
\square ハ্যে নিকে পাতা মরর শুকিয়ে যায়

প্রতিকার : জমিত সুযমভাবে পটাল সার গ্থয়াগ! করা।

$$
\begin{aligned}
& \text { লক্ণপর বিবরণ }
\end{aligned}
$$

লক্ষন্ণর বিবরণ

友
লক্ষ，ণর বিনরণ
 গा丁

『ा？

 কন্ষ্ণপর বিররূ

7 ヶाए

লক্নেণর বিবরণ

লক্ষনণর বিবরণ

7 কला? ফলन s মাन কल যায়़

লস্ষ্ণণর বিবরণ
ㄱ 5ाए बोक 玉े?

বিবর্গ

লক্ষণণর বিবরণ

 প্রতিকার : পাঁশ সর্র গ্রয়াগা করা :

লক্ষ!ণর বিবরণ

 नस
বড় পাजাসम্পন্न গাছছ ক্যালসিয়াম্মর প্রধান কাজ্জ

\square পাতা বি सৃর
斤冨न
(7) भाज मब्त नाए।
(7) भाज साफे तार:1

লক্ষ্ণর বিবরণ

그 গाए বफ़ इए ब़


```
লন্কণর বিবরণ
```


 কমলা গাएছ ম্যাগনनন শিয়ান্রর প্রপান কাজ্ত

ㄱ घूल e रन ধরाাव্|

 म्डादर्जनक जि
লক্ক.ণর বিবরণ

बाद

লক্ষ্ণ:ণর বিবরণ

লস্ষ্র্রর বিবরূ
7)

7

 ড্রাল ফন্ল সাল্লারর কাজ্র

নক্ষণপর বিনরণ

9?

ধান গাढए সালফাৰর্র কাজ

চিত এ৯ (গ) : পটট জর্মানো ধানের চারা গাছ্ সালফারের অডাবর্জ:নিত লল্গণ
লক্ষণণর বিবরণ
[] গাছের আকার ছোট

ㄱ গাছের পাতা ও কাঙ দুর্বল
[] গাত্ছ কুশি উৎপাদন বিলন্বিত
ㄱ গाए下 কুশির সং্খ্যা কম।
(সালফার অভাবসম্পন্न গাছের পাল্র ৎকটি স্বাজাবিক গাছ দে ওয়া আাছে)
প্রতিকার : জমিতে সালফার সার ব! জিপসাম সার প্রয়াগা করা।
 গোলআলুর্ত সালফাররর প্রধান কাজ
\square পাতা সমভাবে সবুজ রivা
ᄀ পাতা বড় ↔ সবল রাখা
ㄱ आলুর গ্বপগ丁 মান উন্ন ক কর
7 গाছ খাড়া রাथা

7 আল্রু আকারার বড় করা
ㄱ आলুর কলन বাড়ানना।

বড় পাতাবিশিষ্ট চারা গাতছ (উদাইরল-নামাক) সালফাররর প্রধান কাজ
] চারা গাছ দ্রুত বড় কর্রা

ᄀ সকল পাতা সমভারব সবুজ রাখা
] রোরের গ্থুব ক্মান্লা
7 ศिক়্ সরল করা

চিত ৪২: ধানनর א্জমিত সালফার 3 দত্তর অডবর্জনিত बस्ष্ণ
লক্ষ্যপর বিবরণ
সালফাররর অভাবে
 হন্नपू হয়ে যায়
\square গাছের বৃर্ণ্ণ বन्ধ হুয় যায়।
দস্তার অভারব
\square 氏ান গाए স্তান স্থান বসে যায়

প্রতিকার : সালকার : জিপসাম সার প্রয়োগ করা। দস্ত্র : জিঙ্ক সালফফট সার প্নয়োগ কর্র।

ধান গাছছ দস্তার কাজ্জ
17 गाएँ बए।

আলু গাছ্ছ দস্তার প্রধান কাজ

-লনু গাए.ছ দস্তার প্রান কাজ

লক্ষ্ণণর বিবরণ

\square স্থान স্থান্ কর পাতা শুকিয়ে यয়़
■ গাए্রের বৃদ্দি বন্ধ হতয় যায়

লস্ষণণর বিবরণ

\square গाにছ़র বৃদ্দ্ণি বন্ধ হয়ে যায়

লক্ষ্ণর বিবরণ

শিম গাছ্ মাদ্গনিভ ও ন্লোহার কাজ
ㄱ পাजার প্পসন হার 伦क রাখা

(7) সময় ম(ে) ফুन ও ফन ধরান্小া

ᄀ পাতা ও কাঔ শ শত্র রাখা।

जजदर्जन लन्व

লক্ষ্ণপর বিবরূ

 ধান গাজ্ছ বারারননর প্রধান কাজ

 বন্ধা করা

লক্ষণর বিবরণ

व দানা হোট হয়
ㄱ দালার ভিতরে লাল মরিচা দাগ পড়ে

- দानाয় cেলের পরিমাপ কল্ম যায়।

প্রতিকার : এ ধরন্小র লж্ণ দেখা দেওয়া জমিতে বোরন সার দেয়া। গাৃছ বোরন সার শ্যে নর্রা।

চীনাবাদাম গাচ্রর শিকড় ও দানায় ববার্নর কাজ

7 माना পুষু কর

\square গाए সবুজ ও সত্ज রাঙ্।

লক্ষনণর বিবরণ
 যয়়

লক্ন?ণর বিবরল

ন্ম্ণণর বিবরল
ম্যাগান্নিয়াম

.বার
7 दाए एलंज शब्थ सम

কপিজ্জাতীয় গাড় অলিব:ড়ান্মর প্রধান কাজ্জ

ᄀ	
\square	
7	
근	ফল্রকপপরু ফু বড় কর্র
극	
7	«ाडा घन म্বুর ताश।


```
লস্ষ্ণপর বিবরণ
```



``` ए \(1!1\)
```

श্তিকার :

जम্ৰধণর বিবর

न্नবু গাতছ তামার প্রধান কাজ

7

7 \ddagger 斤াছর পাতা সমভাবে সবুজ রাখা

লস্ম্ণপর বিবরণ


```
मूयम পूप्रि সम्ब्भर्ब丁 Јथ्य 
```


সুষম সার ব্যবহার ও পরিবেশ রক্ষা

ফসল উৎপাদনে অধিক ফলন পাওয়ার জন্য বাইরে থেকে যেসব উদ্ডিদ পুষ্টি দ্রব্য জমিতে প্রয়োগ করা হয় তা সাধারণত সার নামে পরিচিত। অতীতকালে তৎকালীন কৃষি ব্যবস্থায় অর্থাৎ অনুন্নত জাত ও গতানুগতিক ব্যবস্থাপনায় সার প্রয়োগ ছাড়াই সারা বছর ফসল ফলানো যেতো বলে এদেশের মৃত্তিকা উর্বর মৃত্তিকা বলে জনপ্রিয় ছিল। কিন্তু বর্তমান অবস্থা ভিন্ন। ফসলের উচ্চ ফল্লনশীল জাত উজ্জাবন করা হয়েছে, সেচ ব্যবস্থার প্রসার ঘটেছে, রোগ-পোকা দমনের পদ্ধতি ও উপকরণ উদ্ভাবিত হয়েছে। এমতাবস্থায় সার প্রয়োগ ব্যতীত ফসলের উচ্চ ফলনন পাওয়া সষ্তব নয়। আমদের দেশের অধিকাংশ ম্ত্তিকা মধ্য উর্বর বা এর কম। মধ্যম উর্বর বা কম উর্বর জমিতে জৈব সারসহ সুষম সার দিলে অধিকতর ফলন পাওয়া যেতে পারে।

বাংলাদেশের অধিকাংশ দো-আঁশ মৃত্তিকাতে উন্নত পদ্ধতিতে ফসল চাম করতে গিয়ে ইতোমধ্যে নাইটাজজেন, ফসফরাস, পটাশিয়াম ম্যাগনেশিয়াম, সালফার, দস্তা ও বোরনের অভাব পরিলক্ষিত হয়েছে। তাই একমাত্র জৈব সার ও সুষম সার প্রয়োগ দ্বারা এই সমস্যার সমাধান সম্ভব।

সাম্প্পতিককালে বাল্লাদেলে শাব-সবজি ও ফুল-ফল চাষ ও নার্সারির প্রসার ঘটেছে। बমির সীমাবদ্ধতার কারণে বসতবাড়ির আনাচে-কানাচে এমনকি ছাদেও এদের চাষাবাদের উদ্যোগ নেওয়া হচ্ছে। তাই এসব ফসলের উচ্চ ফলনন প্রাপ্তি ও পরিবেশ রক্ষার জন্য জৈব সারসহ সুষম বা সুষম সার প্রয়োগের প্রয়োজন দেখা দিচ্ছে।

এদেশে জৈব সারের ঘাটতি থাকায় দিনে দিনে কচ্পোস্ট সারের ব্যবহার বাড়ছে। কচ্পোস্ট সারের সাথে মিশ্রভাবে রাসায়নিক সার ব্যবহৃত হচ্ছে।

জৈৈৈ সার ও সুষম সার তৈরি ও ব্যবহার সম্পর্কে নতুন নতুন গবেষণা তথ্য পাওয়া यাচ্ছে। তাই ফসলে সারের ব্যবহার সম্ষন্ধীয় তথ্যে প্রণীত এই গ্র্থটি সার ব্যবহারে প্রয়োজনীয় নির্দেশনাপ্রদান করবে।

এই সার ব্যবহার গ্রচ্ছে ফসল ও ফম্মলের জাত ভিত্তিতে সারের প্রকার, পরিমাণ, প্রয়োগ পদ্ধতি এবং প্রয়োগের সময় সম্পর্কে নির্দেশনা রয়েছে। বিগত সাত বছর যাবত বাংলাদেশের বিভিন্ন নার্সারি, শাক-সবজি ও জৈব খামারে পরিচালিত পরীক্ষা ও অভিজ্ঞোর আলোকে সার ব্যবহার নির্দেশনার মূল তথ্যভিত্তিতে এটি রচিত হয়েছে।

এই গ্রষ্থটি ব্যবহার করে শহর উপশহর, বন্দরসহ মফস্বলের সকল্ল অগ্রণী খামার মালিক তাঁদের ফসলের উৎপাদন বাড়াতে সক্ষম হতে পারেন। এতে শ্বু উৎপাদ্নই বাড়বে না, বরং শাক-সবজি ফুল-ফলের গুণাগুণ ও স্বাদ বাড়বে।

সুষম সার ব্যবহার করার ফলে ফসলে পোকা ও রোগের প্রকোপ ও বিষ দ্রব্যের ব্যবহার কমবে, অর্থাৎ শাক-সবজি ও ফুল-ফলে বিষাক্ত দ্রব্য থাকার আশংকা কমে যাবে।

সার ব্যবহারের সুফল : নিচে সার ব্যবহারের সুফল সম্পর্কে সংক্ষেপে আলোচনা করা হলো।

ক. মাঠ ফসল ও শাব-সবজি ফল-মূলের উৎপাদন বৃদ্ধিতে গণচেতনা বেড়েছে।
च. সমাজের সকল স্তরে এদের চাষে আগ্রহ জেগেছে।
গ. শহর-বন্দর এমনকি মফস্বল এলাকায়, মাঠে ও নার্সারিতে উন্নতমানের চারা ও তৈরি সার পাওয়া যায়।

ঘ. উন্নতমানের কৃষি ও উদ্যান পণ্য বিদেশে রপ্তানি করা যায়।
ঙ. ফসলের জাতভেদে সারা বছরই চাষ করা যায়।
চ. বাড়ির আঙিনায় বা ছাদদ চাষ করা হলে পরিবারের সবাই ফসলের পরি০র্যা করতে পারে।

ছ. বাজারে উন্নতমানের কন্পোস্ট গুঁড়া সার পাওয়া যায়, যা ঠিকমত ব্যবशার করলেলে রাসায়নিক সারের ঝামেলা (ক্রয়, পরিমাপ, মিশ্রণ ইত্যাদি কারণে) পোহাতে হয় না।
জ. আধুনিক জাতের মাঠ ফসল, শাক-সবজি, ফুল ও ফল-মূলের ফলন বেশি।
ঝ. বাড়িতে সর্বদা হাতের কাছে টাটকা দানাপুষ্টি, ফল, ফুল ও শাক-সবজি পাওয়া যায়।
ঞ. নিজের কাছে হিসাব থাকে বলে কীটনাশক ও রোগনাশকজাতীয় দ্রব্যের বিষাক্তুতা এড়িয়ে খাওয়া যায়।

সারের কাজ: উঙ্ভিদের পুষ্টি ঘাটতি পূরণ

ফসল চাষাবাদের জন্য তৈরি করে চারা রোপণ করার পর ফসলের গাছে পুষ্টির অভাব দেখা দিতে পারে। তখন গাছে পুষ্টির উপসর্গ দেখে পরিপৃরক সার প্রয়োগ করততে एয়। সামগ্রিকভাবে গাছের বিভিন্ন অপুষ্টি উপসর্গ উদাহরণস্বরাপ উল্লেখ করা হলো।

১। গাছ বড় হয় না, নিচের পাতা হলদে	--ইউরিয়া (নাইটারেন)
২। গাছে পাতা পোড়া দাগ	-- পটাশ (পটাশিয়াম)
O। গাছ হাক্ষা হनटh	— জিপসাম (সালফার)
8। পাত ও শিরা-উপশিরায় দাগ	- ম্যাগনেশিয়ামও লোহ
৫। পাতা ছৌট ছোট, বিবর্ণ দাগ	--- দস্তা সার
৬। গাড় বর্ণের বড় পাতা ও ডগা মরে যাওয়া শিরা-উপশিরায় দাগ	- কপার সার

সার প্রয়োগে ফসলের ররাগ দমন

ফসলের জমিতে সুষ্ম মাত্রায় সার দিলে গাছছ অনেকগুলো রোগ হয় না, বা রোগ র্খা দেওয়ার পর সুষম বা ঘাটতি সার দ্রব্য দিলে তা সেরে যায়। এখানে কতকগুলো রোগের নাম ও সার চিকিৎসা উল্লেখ করা হল্লা।

সার্রণি ১০: ফসলের রোগ ও সারের ব্যবহার (উদাহরণ হিসেবে)

রোগের নাম	एসलুর নাম	রোগের লক্ষ	চিকিৎসা
হুইপ নুইল রোগ	एুলকপি বাধাকপি সরিষা	গাছছর পাত চিকন रशয়ে যায়	घलिবড়েनाম প্রয়াগ
পাতা পোড়া उ জ্লাব্ট রোগ	अধিকাংশ গাছ	পাতার প্রান্ত 3 কিনারাই পুড়ে যায়	পটাশ প্রয়া\|
পাত নীनाड হउয়া	অধিকাশ্ গাছ	পাजा नीनाड वर्ण ধারণ করে, গাছ বাড়ে না	$\begin{aligned} & \text { ফ্সযৌ } \\ & \text { প্রয়़াগ } \end{aligned}$
বিবর্ণ দাগ	अধ্বিকাশ্শ গাছ	পাতाয বिবর্ণ माभ পড়ড (ক্লারোসিস)	$\begin{array}{ll} \hline \text { দস্ত্রা } & \text { সার } \\ \text { প্রয়োগ } \end{array}$
পাতা হनডদ হ হয়া	अধ্বিনাশ্শ গাছ	निচের পাতা বा मকल পাতা इनদू रूত शादক	ইউরিয়া/ জিপ সাম প্রয়োগ
জালিক माগ	अধিকাশ্শ গাছ	পাতার শিরা বা ফলক বিব্র্ণ হয় জालिক বर्ণ দाभ সাট্টি করে	ম্যগগেশিয়াম /लिए मार প্রয়াগ
ডগा মরা	লেবু, মরিচ	গাছইর ডগাগালে\| মরে য়ে থাকে (ডাইব্যাক)	কপाর প্রर়াগ

ফসল চাষে সুষম সার ব্যবহার

আজকাল মাঠ ফসল, শাক-সবজি ও ফলমূলের চাষ লাভজনক। এই লাভ আর বাড়ানে! যায়, কারণ গাएছ সুষম সার ব্বাবহার করললে এর ফলন ও গুণাগুণ বেড়ে যায়। নিচ উপস্থাপিত হিসাব থেকে তা স্পষ্টভাবে বোঝা যাবে।

সারণি ১১ : ফসল চাষের থসড়া আয়-ব্যয়

एमল/স<জি/	খসড়া আয়-ব্যয় টাবা			
	গতানুগতিক চাষ		ব্যালেন্স সার দ্বারা চাষ	
	बোট ব্যয় টাকা	নোট আয় তি\|কা	बান ব্যয় টাকন	
পাতা সবজি	200.00	2<8.00	200.00	२00.00
एल সবজি	280.00	260.00	200.00	000.00

পরিবেশ বিজ্ঞান ：সার ব্যবছার নির্দেশন

মসन्ना	\＄40．00	र00．00	২＜0．00	800.00
ফল（বাণিজ্যিক）	200．00	र৫0．00	500．00	『00．00
ফুল্ন（কিছু সংখ্যক）	र＜0．00	000．00	O＜0．00	৬00．00
মোট ফস্ল	$9<.00$	৯৫．00	২১O．00	২৬区．00

৫। সার্রের শ্রেণিকরণ

সারা বিশ্বে বর্তমান হাজারো রকন্মের সার দ্বব্য ব্যবহুত হচ্ছে। ফস্সল জমি，মাছের চাষ， চিংড়ির চাষ প্রভ্তি কেকে এসব সার দ্রব্য ব্যবহৃত হ্য।

সার দ্রব্বের উৎস，প্রস্তুত পদ্ধতি，আকার，গঠন，ব্যবशার্রে উস্দেশ্য ও মৃত্তিকাতে প্রভাব প্রভ়তির ভিত্তিতে সারকে নানাভাবে ভাগ করা যায়। এখানে সারের ক＜্রেকটি প্রধান ল্রেণকরণ উদাহরণণহ উল্পেখ করা হলো।

3．সার্রের উৎস অनুসার্ সার্রের শ্রেণিকরণণ

প্রাক্তিক সার
প্রাকৃতিক বর্জ্য থেকে টৎপাদিত
খামারজাত সার
কস্পোস্ট
তেন্ল বীজ，そৈল
ষ্ষ্ষ রক্ত
হাড়ের গুঁড়া
হিউমিক দ্রব্য।

কへিম সার
কলকারখানায় প্রস্তুত
ইউরিয়া，ডি এপি，এমোমিয়াম সালফেট
টি এস পি，এম এসপি
এমপি，পটাশিয়াম সালফ্েট
দস্তা সার，জিষ্ভক সালফেট ও জ্ভিষ্ক অক্ষি－সালফেট জিপসাম।

২．পুষ্টি উপাদাননর সংখ্যা অনুসারে সারের শ্রেণিকরণ

ইটরিয়া	ড্রিপি সার	N－P－K नির্দিষ্ট	মিশ্র সার 3
		আনুপাতিক সার	জৈব সার
এমপি	পটাশিয়াম সালফেট	৫० ：২০：১০	

৩. প্রস্তু পদ্ধতি অনুসারে সারের শ্রেণিকরণ

8. আকার অনুসারে সাররর শ্রেণিকরণ

৫. গঠন অनুসারে সার্রে শ্রেণিকরণ

৬. ব্যবহারের উদ্গেশ্য অনুসারর সারের শ্রেণিকরণ

৭. মৃত্তিকাতে প্রভাব অনুসারে সারের শ্রেণীকরণ

উপরের ছকক সংক্ষিপ্ত উদাহরণসহ ৭ ধরনের শ্রেণিকরণ করা হলেও একই শ্রেণিকরণ কাঠামোতেও এগুলোর শ্রেণিকরণ করা যায়। তবে তা খুব জটিল হয়ে যায়। অবশ্য বোঝার সুবিধার্থে উক্ত ৭ ধরনের শ্রেণিকরণের মধ্যে যে কোনো দুটি বা তিনটি শ্রেণিকরণ একসাথে করে শ্রেণিকরণ অবকাঠারমা তৈরি করা যায়।

জৈব ও রাসায়নিক সার

কৃষি ফসল ও মৎস্য পুকুরে ব্যবহারের জন্য সারকে প্রধানত দু'ভাগে ভাগ করা যায়। যथा-
১. জৈব সান ;
২. রাসায়নিক সার।

জৈব সার

পশু, পাvি, মানুয, গাছপালা, কৃষি কারখানা থেকে প্রাপ্তু সকন জৈব বর্জ্য ও উপজাত দ্রব্য সরাসরি বা প্রক্রিয়াকরণের পর প্রয়োগ করা হয় তাকে জৈব সার বলে।

পরিবেশ রক্ষা ও কৃষি উৎপাদন বৃদ্ধির জন্য জৈব সার প্রয়োগের গুরুত্ব খুবই বেশি। জ্ৈিব সারের উৎস ও গঠন এত ব্যাপক যে এর ব্যবহারগত পদ্ধতিসমূহ এক জাযগায় আলোচনা করা দুরূহ। তাই জৈব সারের প্রয়োগ সম্পর্কে ফসলভিত্তিতে পরবর্তীতে আলোচনা করা হয়েছে। বিশেষ করে কস্পোস্ট উৎপাদন পদ্ধতি বিস্তারিতভাবে আলোচনা করা হয়েছে। এছাড়া একই সিরিজ্রের পরিবেশ বিজ্ঞান ：মৃত্তিকা জীব ও জৈব সার গ্রন্থে এর বিস্তারিত আলোচনা রয়েছে।

এ अধ্যায়ে বিশেষভাবে রাসায়নিক সার বিষয়ে বিস্তারিত আলোচনা করা হয়েছে। তবে জৈব সারের গঠন ও পুষ্টি উপাদানের পরিমাণ সংক্রান্ত একটি সারণি নিচে উপস্থাপন করা হলো।

সারণি ১২ ：জ্বিব সার দ্রব্যের গঠন ও পুষ্টি উপাদানের পরিমাণ
ক．খামারজাত সার ও ক্্পোস্ট

দ্রব্যের নাম	পুষ্টি উপাদানের পরিমাণ（\％）			
	নাইষাজেন （N）	ফসফেট $\left(\mathrm{P}_{2} \mathrm{O}_{5}\right)$	পটাশ（ K_{2} ）	অन्यान्ड
গোবর	0.08	$0 . ১ र$	0.39	কম
গোমূত্র	0．br	$0.0\rangle ৫$	\bigcirc	মধ্যম
ছাগল－ভেড়ার মল－ মूত্র	0．心৫	$0 . 区$	0.00	কম
মनুষ্য মল	3.0	0．b	$0 . 区$	মধ্যম
মনুষ্য মূত্র	2.2	0.35	$0.2<$	মধ্যম
চামড়া বর্জ্য	9.0	0.2	0.2	মধ্যম
চুল ও পলম বর্জ্য	১২	0.3	$\bigcirc \bigcirc$	কম
মৎস্য বর্জ্য	$\stackrel{\text { b }}{\text { ¢ }}$	0.	0．2	মধ্যম
ছাস－মুরগির খামার বর্জ্য	2． 0	O．	3.0	বেশি
খামার কচ্পোস্ট	0.6	0.39	$0 . 区$	কম
ছাঁস－মুরগির খামার কঙ্পোস্ট	$\bigcirc .0$	$\bigcirc .0$	र．${ }^{\circ}$	বেশি
প্পীর কস্পোস্ট	3.6	3.0	১．区	মধ্যম
গ্রামীণ কম্পোস্ট	0.6	0.2	0.8	ক
মিউনিসিপ্যাन মিশ্র ক内্শোস্ট	२．区	১．区	२． 0	মধ্যম

পরি＜শশ বিষ্ঞান ：সার ব্যবহার নিc্দেশনা

কচুরি পানা কন্পোস্ট	रे०	3.0	र．	কম
মিশ্র आগাছা ও পাতা কম্পোস্ট	১．b	0.9	১．区	কম
মিশ্র এক্টিভেটেড কম্পোস্ট	0.0	3.0	र．	মধ্যম
বায়োএক্টিভেটেড সুষম ক্্প্পাস্ট	¢．0	र०	$\bigcirc .0$	বেশি
বিশেষ্িিত কম্পোম্ট （ফর্মূলেটেড）	8．0－9．0	2．0－৩．0	र－0－8．0	খুব বেশি
$\begin{array}{ll} \hline \text { কর্দম } & \text { হিউমাস } \\ \text { কমপ্লেক্স } \end{array}$	৩．0－6．0	2．0－8．0	ग．0－『．0	খুব বেশি

হিসাব সূত্র（্রায়）
$N \times ২ ২=$ ইউরিয়া
$\mathrm{P} \times$ ২．২৯ $=\mathrm{P}_{2} \mathrm{O}_{5}$ ফসফেট \times ২．২৩＝টিএসপি
$\mathrm{K} \times$ ১．১২ $=\mathrm{K}_{2} \mathrm{O}$ পটাশ \times ১．৬৬ $=$ এমপি সার
キ．चৈল ও উপজাত দ্রब

দ্র＜্যের নাম	নাইটার্রে পুষ্টি উপ্রাদানের পরিমাণ（\％）			
	নাইটাজ্জেন (N)	$\begin{aligned} & \text { ফস<ফেট } \\ & \left(\mathrm{P}_{2} \mathrm{O}_{5}\right) \end{aligned}$	পটাশ（ $\mathrm{K}_{2} \mathrm{O}$ ）	অन্যান্য
সরিষার খৈল	©． 2	3．6	1．0	কম
তিলের খৈল	凶゙，	रे०	১．২	মধ্যম
চিনাবাদাম খৈল	৫．区	3.9	3.8	কম
তুলাবীজ খৈল ভেরেন্ডা খৈল	8.8	र． 0	d． 6	মध্যম
ভেরেন্ডা খৈল নারিকেন খৈল	®．৬	ग． 6	ग． 0	মধ্যম
নারিকেল খৈল নিমের খৈল	0.3	d，b	ग． 9	কম
নিমের খৈল	৫．২	J． 0	28	
নাইজার খৈল	8.6	ग．b	3.	মধ্যম
মহুয়া খৈল	र． 8	0．6	3.0	কম
তিসির খৈল	৫．区		3.6	কম
¢ুসুম খৈन	\＆b	2.8	D．२	মধ্যম
সয়াবিন খৈল	『．b	J． 6	3．${ }^{3}$	মধ্যম
সূর্যমুখী খৈल	¢． 0	र． 0	2.0	মধ্যম
শুক্ষ রক্ত	31	3.9	र．	মধ্যম
	১১	ग．२	3.0	মধ্যম

কসাইখামার মাংস বর্জ্য	30.8	2．\downarrow	0.6	বেশ্রি
খুরা 3 শিং বর্জ্য	১৩．0	2． 0	－	বেশ্তি
＊＊চা হাড়	\bigcirc	रे 0	－	মধ্যম
সिद্ध হাড়	J． \mathbb{C}	र9．0	－	মধ্যম
মৎস্য হাড়	ग． \mathbb{C}	२१．०	－	মধ্যম
মৎস্র বর্জ	9.0	$\stackrel{0}{0}$	d，b	বেশি
ই歪 বর্জ্য	3.0	$0 . 区$	3.0	কম
তামাক বর্জ্	J．\downarrow	0.2	0．b	কম
বেসিক স্ত্যাগ	0．${ }^{\text {c }}$	9.0	3.0	মধ্যম
সাবান বর্জ্য	0.2	0．2	2.0	মধ্যম

গ．খড় দ্রব্য

দ্রব্যের নাম	পুষ্টি উপাদানের পরিমাণ（\％）			
	নাইটাজজেন (N)	ফসফেট $\left(\mathrm{P}_{2} \mathrm{O}_{5}\right)$	পটাশ（ $\mathrm{K}_{2} \mathrm{O}$ ）	चড় ：দाना অনুপাত
ধানের থড়	0.65	○．২৩	১．৬	ग．$\square^{\text {d }}$
গমের খড়	0．8\＄	O．২৫	১．২b	2． 8
সরগাম vफ़	0.80	০．২৩	२． 39	र． 0
চিনা－কাউন－বাজরা	O．¢ 6	0.98	र．$<$	২．०
ভুট্টা	0．৫৯	0.05	3.05	ग．\downarrow
মুগ－মাশ	2.8	0.80	2． 9	र． 0
মসুর－বিন	ग． 2	0．৬০	ग．\downarrow	2.0
খেসারি	3.0	0.80	2.9	\bigcirc
ছোলা	1．2	0． 0.	১．২৫	3.0
অড়হর	3.2	$0 . ৫ \vdash$	১． 26	र．\downarrow
আV	0.08	0.08	0.80	－
তেলবীজ	0.98	0.20	0.30	২．\bigcirc
গোলআলু	0.80	0.09	0．১र	－
ঘাস আগাছা	0.00	0.08	0.30	－
निগু⿰ু আগাছা	$0.6<$	0.99	०．१२	－
লিগ্যুম গাছের পাতা	3． 2	0.82	0.06	－

দ্বিতীয় অধ্যায়
 সারের বৈশিষ্ট্য

১। রাসায়নিক সার

কল-কারখানায় কৃত্রিমভাবে রাসায়নিক প্রক্রিয়ায় উৎপাদিত দ্রব্য যা জমিতে এক বা একাধিক উদ্তিদ পুষ্টি উপাদান সরবরাহের লক্ষ্যে প্রয়োগ করা হয় তাকে রাসায়নিক সার বলে।

পুষ্টি উপাদানভিত্তিক সার দ্রব্যের অন্তর্গত প্রধান পুষ্টি উপাদানের নাম্ম সারের নামকরণ করা ছয়। অবশ্য কোনো সার দ্রব্যে একাধিক পুষ্টি উপাদান থাকলে প্রধানত যে উপাদানের জন্য প্রয়োগ করা হয়, সে নামেই তা পরিচিত হয়। যেমন- এমোনিয়াম সালফেট সারে নাইট্রেজেন ও সালফার থাকলেও নাইট্রোজেন সার নামম পরিচিত। কিন্তু ডাই এমোনিয়াম ফসফেট সার নাইট্রোজেন ও ফসফরাস উভয় নামেই পরিচিত হতে পারে।

প্রাথমিক পুষ্টি উপাদান

১. নাইট্রোজেন—ইউরিয়া, এমোনিয়াম সালফেট
২. ফসফরাস-সিংগেল সুপার ফসফেট, (এসএসপি) ট্রিপল সুপার (টিএসপি) সালফেট।
৩. পটাশিয়াম—মিউরেট অব পটাশ (এম পি) ও পটাশিয়াম সালফেট ।

মাধ্যমিক পুষ্টি উপাদান

১. ক্যালসিয়াম-জিপসাম, কৃষি চুন;
২. ম্যাগনেশিয়াম-ডলোমাইট, ম্যাগনেশিয়াম সালফেট;
৩. সালফার-জিপসাম, সালফার পাউডার;

গৌণ উপাদান
১. জিজ্ক—জিজ্ক সালফেট, জিভ্ক অক্সিসালফেট ;
২. বোরন—বোরাব্স, বোরন ফ্রিট্স, সলুবর;
৩. লোহা-লোহা চিলেট।

পুষ্টি উপাদানের সংখ্যাভ্ভিত্তিক শ্রেণীকরণ

সার দ্রব্যে একাধিক পুষ্টি উপাদান থাকতে পারে। কোনো সার দ্রব্যে কেবল একটি অত্যাবশ্যক উপাদান থাকন্ে তাকে সরল (straight) সার এবং একাধিক প্রধান বা প্রাথমিক পুষ্টি উপাদান থাকলে তাকে যৌগিক (compound) সার বলে। সরলল সারের মধ্যে উন্ল্লেখযোগ্য হচ্ছে ইউরিয়া ও টিএসপি। যৌগিক সারের মধ্যে রয়েছে ডাই-এমোনিয়াম ফসফেট, পটাশিয়াম নাইটেট, ইত্যাদি।

ভৌত প্রকৃতি অনুসারে শ্রেণিকরণ

ভৌত প্রকৃতি অনুসারে সার কঠিন, তরল ও বায়বীয় হতে পারে। কঠিন আকারের মধ্যে রয়েছে দানাদার (ইউরিয়া) গুঁড়া (হাই ফসফেট), চিলেট (-লোহা চিলেট) ফ্রিটস (-বোরন <্রিটস) দানাদার সার আবার প্রিল দানা (ইউরিয়া), মধ্যম ডিশ্বাকার (TSP) অনিয়মিত (MP) ও সুপার দানা ইউরিয়া (USG) হতে পারে। সারের অন্যান্য আকারের মধ্যে রয়েছে স্নারি, মাডবল ও অন্যান্য অবলম্ব (suspension)।

তরল সার সেচের পানির সাথেও প্রয়োগ করা যায়। এমোনিয়া সার বায়বীয় আকারে গাছের গোড়ায় মাটিতে ইনজেকশন করে দেওয়া যায়।

২। নাইট্রোজেন সার

ফসল উৎপাদন বৃদ্ধির জন্য কলে-কারখানায় রাসায়নিক ঊপায়় প্রস্তুত যে দ্রব্য উদ্ডিদের নাইট্রোজেন পুষ্টি হিসেবে প্রয়োগ করা হয় তাকে রাসায়নিক নাইট্রোজেন সার বলে। মাটির উর্বরতা মাত্রা অনুসারে একই সাথে উদ্ডিদের সকল পুষ্টি উপাদানের অভাব দেখা না দিলেও নাইট্রোজেন, ফসফরাস ও পটাশিয়ামের অভাব বাংলাদেশের অনেক স্থানে স্পষ্টভাবে পরিলক্ষিত হয়। কারণ উদ্ডিদ এই ৩টি উপাদান বেশি পরিমাণে পরিশোষণ করে এবং এগুলোর সামান্য অভাবেই ফসলের উৎপাদন উল্লেখযোগ্যভাবে কমে যায়। মাটির উর্বরতা ও উৎপাদন ক্ষমতা বৃদ্ধির জন্য জৈব ও উভয় আকারেই সার প্রয়োগ উত্তম।

নাইট্টাজেন সারের শ্রেণিকরণ

উপকরণ দ্রব্যের উৎস, সার প্রস্তুত পদ্ধতি, সাররর গুণাবলী এবং নাইট্রোজেনের আকার অনুসারে নাইট্রোজেন সারকে নানাভাবে শ্রেণিভুক্ত করা যায়।

তবে এদের কেবল একটি বৈশিষ্টেযের ভিত্তিতে সার শ্রেণিভুক্ত করা হলে তা কৃষিতাত্ব্বিক ব্যবহারের জন্য অসম্পূর্ণ হরতে পারে বলে উপরে একটি সমন্বিত শ্রেণিকরণ উল্লেখ করা হল্লো।

নাইট্রোজেন সাররর তুলনামূলক গুণাবলী :
বিভিন্ন প্রকার নাইটোজেন সারের গুণাবলীর তুলনামূলক আলোচনা নিচে সংক্ষেপে উল্লেখ করা হলো।
এমমানিয়ামজাতীয় নাইটট্রোজেন সার
১. কৃত্রিমভাবে উৎপাদন করা হয়। অর্থননতিকভাবে সংগ্রহযোগ্য প্রাকৃতিক অবক্ষ্পপ পাওয়া যায় না;
২. এরত নাইট্টেজেন বিজারিত $\left(\mathrm{NH}_{4}\right)$ অবস্থায় থাকে;
৩. মাটিতে দ্রবীভূত হয় ;
8. চুয়ানী অপচয় কম;
৫. মধ্যম মেয়াদি ফসলের জন্য অধিক উপযুক্ত;
৬. নাইট্রোজেনের পরিমাণ বেশি (৮০\% পর্যন্ত) ;
१. নাইট্রিফিকেশনের প্রয়োজন হয় অর্থাৎ $\left(\mathrm{NH}_{4}\right) \rightarrow\left(\mathrm{NO}_{3}-\right)$;
৮. স্থায়িত্ব মধ্যম (৩০ থেকে ৬০ দিন);
৯. বিক্রিয়া শারীরবৃত্তীয়ভাবে অম্লীয় (নাইট্রিফিকেশনের পর);
১০. এঁটটল মাটিতে প্রয়োগ করলে কর্দম সংযোজন বেশি হতে পারে;
১১. জলাবদ্ধ অবস্থায় প্রয়োগ করলে নাইট্রিফিকেশন ও ডিনাইট্রিফিকেশন কম।

উদাহরণ : এনহাইড্রাস এমোনিয়াম $\left(\mathrm{NH}_{3}\right)$, এমোনিয়াম সালফেট $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}$, এমোনিয়াম ফসফেট $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{PO}_{4}$.

নাইট্রেট নাইট্রোজেন সার

১. প্রাকৃতিক অবক্ষেপ থেকে উৎপাদিত হতে পারে যেমন- সোডিয়াম নাইট্টেট বা পটাশিয়াম নাইটেট ;
২. নাইট্রিফিকেশনের প্রয়োজন হয় না ;
৩. নাইট্রোজেন জারিত $\left(\mathrm{NO}_{3}\right)$ অবস্থায় থাকে;
8. উদ্ভিদের জন্য দ্রুত প্রাপ্য হয় ;

『. চুয়ানী অপচয় বেশি;
৬. জলাবদ্ধ অবস্ছায় ডিনাইট্রিফিকেশন বেশি ;
৭. মাটির বিক্রিয়ায় প্রভাব অনেকটা নিরপেক্ষ বা প্রশম;
৮. স্থায়িত্ব কম (১৫ থেকে 80 দিন);
৯. মাটিতে সহজেই দ্রবীভূত হয় ;

ゝ0. দীর্ঘমেয়াদি ফসলের জন্য কিছুটা অনুপযুক্ত;
১১. স্বল্শমেয়াদি ফসলের জন্য অধিক উপযোগী।

উদাহরণ :পটাশিয়াম নাইট্টে $\left(\mathrm{KNO}_{3}\right)$, এমোনিয়াম নাইট্টেট $\left(\mathrm{NH}_{4} \mathrm{NO}_{3}\right)$ ।

এমাইড আকার

১. কৃত্রিমভাবে উৎপাদন করা হয় ;
২. নাইট্রোজেন বিজারিত $\left(\mathrm{NH}_{2}\right)$ আকারের থাকে;
৩. অধিকাংশ পানিতে দ্রবণীয় ;
8. এমোনিফিকেশন/হাইড্রোলাইসিস ও নাইট্রিফিকেশন প্রয়োজন ;
৫. চুয়ানী অপচয় মধ্যম;
৬. অবশিষ্ট প্রভাব অম্লীয়, অন্যান্য গুণাবলী অনেকটা এমোনিয়াম আকারের অনুরুপ।
উদাইরণ : ইউরিয়া, ক্যালসিয়াম সায়ানেমাইড ।

জৈব বা আমিষ আকার

3. উৎস প্রাকৃতিক-প্রাণী বা উদ্ডিজ্জ বা মিশ্র ;
২. বেশ জটিল জৈব ভৌগে নাইট্রোজেন অবস্থান করে;
৩. অধিকাং্শ জৈব সার পানিতে জদ্রবণীয়;
4. কার্যকারিতা বিলম্বিত বা দীর্ঘস্থায়ী;
৫. มাটির অণুজৈবিক গুণাবলী উন্নত করে;
৬. চুয়ানী অপচয় কম;
१. মাটির অম্লত্ন সাময়িকভাবে বাড়তে পারে;
৮. মাটির ভেতত গুণাবলী উন্নত হয় ;
৯. অন্যান্য পুষ্টি উপাদানও সরবরাহ করে।

সারণি ১৩ : নাইট্োজেনখটিত রাসায়নিক সারের বিবরণ

সার	উপাদান পরিমাণ		
	নাইট্রাজেন (\%)		গ্রেড $\mathrm{N}-\mathrm{P}_{2} \mathrm{O}_{5}-\mathrm{K}_{2} \mathrm{O}$
ক. এমাইড আকার			
১. ইউরিয়া ২. ইউরিয়া সালফার ৩. ক্যালসিয়াম সায়ানেমাইড	$\begin{aligned} & 8 ष \\ & 80 \\ & 20 \end{aligned}$	$\begin{gathered} - \\ s o(\mathrm{~S}) \\ \text { ou(Co) } \end{gathered}$	$\begin{aligned} & 8 \varangle-0-0 \\ & 80-0-0 \\ & 20-0-0 \end{aligned}$
খ. এমমানিয়াম আকার			
8. ডাইএমোনিয়াম ফস্যেট ৫. এমোনিয়াম সালফেট ৬. এমোনিয়া ক্লোরাইড ৭. মহনাএমোনিয়াম ফসফেট ৮. এনহাইড্রাস এমোনিয়া ৯. এনহাইড্রাস এমোনিয়া সালফার ১০. এমোনিয়ামযুক্ত সাধারণ সুপার ফসফেট	২० र० रい ১O b- १২ 8	$\begin{aligned} & \varangle \cup\left(\mathrm{P}_{2} \mathrm{O}_{5}\right) \\ & ২ ২(\mathrm{~S}) \\ & - \\ & 8 \uplus\left(\mathrm{P}_{2} \mathrm{O}_{5}\right) \\ & - \\ & ১ ০(\mathrm{~S}) \\ & >৫\left(\mathrm{P}_{2} \mathrm{O}_{5}\right) \end{aligned}$	$\begin{aligned} & \text { ২০-২২-০ } \\ & \text { ২০-০-০ } \\ & \text { ২৬-০-০ } \\ & \text { ২০-২০-০ } \\ & \text { ৮২-০-০ } \\ & \text { ৭২-০-০ } \\ & \text { ৪-৬-০ } \end{aligned}$

১১. এমোনিয়াম ফসফেট সালফেট ১২ তরল এমোনিয়া	১® ২२	$\mathrm{২O}\left(\mathrm{P}_{2} \mathrm{O}_{5}\right)$	$\begin{aligned} & \text { S®-b-0 } \\ & \text { ২২-O-O } \end{aligned}$
গ. নাইট্টেট আকার			
১৩. পটাশিয়াম নাইট্রেট ১8. •ক্যালসিয়াম নাইট্টেট ১৫. সোডিয়াম নাইট্রেট		$\begin{aligned} & 8 ৩\left(\mathrm{~K}_{2} \mathrm{O}\right) \\ & >b(\mathrm{a}) \\ & - \end{aligned}$	$\begin{aligned} & ১ ৩-0-৩ ৪ \\ & ১ ৫-0-0 \\ & ১ ৫-0-0 \end{aligned}$
ঘ. এমোনিয়াম ৩ নাইট্টেট আকার			
১৬. এমোনিয়াম নাইট্রেট ১৭. এমোনিয়াম নাইট্টেট সালফেট	0	$\mathbb{Q}(S)$	$\begin{aligned} & 00-0-0 \\ & 00-0-0 \end{aligned}$

বি: দ্র: সারের মান অনুসারে উপাদানের পরিমাণে কিছুটা কমবেশি হত্ত পারে।

৩।ইউরিয়া সার

ইউরিয়া সার বিশ্বের অনাত্ম প্রধান নাইট্টাজেন সার। বেশ কিছু সুবিধা থাকার জন্যা ইউরিয়া সারের ব্যবহার ऊ্রল্র বেড়েই চলেছে। মাটিতে প্রল্যোগে পর ইউরিয়া সার একাধিক জেব রাসায়নিক পরিবর্তন্নর পর উদ্ডিদের গ্রহণযোগ্য আকার অর্থাৎ এমোনিয়াম ও নাইট্রেত আকার ধারণ করে।

ইউর্যিয়াজ্র ব্যৌগর ঐতিহাসিক বিবরণ

১. রয়েলি (Rouelle) ১৭৭৩ সালে প্রস্রাব থেকে ইউরিয়া পৃথক করেন ;
২. প্রাউট (Prout) ১৮১৮ সালে ইউরিয়ার রাসায়নিক গঠন নির্ণয় করেন ;
৩. অহেলর (Wohler) ১৮২৮ সালে গবেষণাগারে ইউরিয়া সংশ্লেষণ করেন ;
8. বিং্শ শতাব্দীর মাঝামাঝি থেকে ইউরিয়ার ব্যাপক বাণিজ্যিক উৎপাদন শুরু रয়।

মাঢ্তিত্ত র্পপান্তরেন প্রধান প্রধান বিক্রিয়া

2. আর্দ্র-বিশ্লেষণ (Hydrolysis) : ইউরিয়া থেকে জৈব রাসায়নিক উপায়ে এমোনিয়াম উৎপাদন।
২. নাইট্রিফিকেশন (Nitrification) : এমোনিয়াম থেকে জৈব রাসায়নিক উপায়ে নাইটেট উৎপাদন (যেমন-ডায়ানাইাইট)
ইউরিয়েজ নামক এক প্রকার এনজাইমের জৈব রাসায়নিক প্রভাবে পানি বিযোজন প্রক্রিয়া সং্ঘটিত হয়। নানা প্রকার ব্যাকটেরিয়া ও ছত্রাক এই এনজাইম উৎপাদন করে। ব্যাকটেরিয়ার মধ্যে Bacillus pasteurii এবং B. freudeurichii এই এনজাইম

উৎপাদনকারী কিছু সংখ্যক ব্যাকটেরিয়া ইউরিয়ার অধিক ঘনত্ব সহ্য করতে পারে বলে এদেরকে ইউরিয়া ব্যাকটেরিয়াও (Urea bacteria)বলা হয়।

ইউরিয়া আর্দ্রবিক্লেষণের প্রষান প্রধান উপাদান

ইউরিয়েজ কার্যাবলী (Urease activity): মাটিতে ইউরিয়েজ উপস্থিতির পরিমাণ এবং কোনো জমিতে নির্দিষ্ট সময়ে কি পরিমাণ ইউরিয়া বিযোজিত হয় তার ভিত্তিতে ইউরিয়েজ কার্যাবলী নির্ধারিত হয়।
প্রয়োগকৃত ইউরিয়ার পরিমাণ : নির্দিষ্ট সীমা পর্যন্ত ইউরিয়া প্রয়োগের পরিমাণ বাড়ানো হলে বিযোজন হার বৃদ্ধি পায়।
মাটির বিক্রিয়া : প্রেশম বিক্রিয়ায় বিযোজন হার বেশি (pH৬.৫ থেকে ৭.৫)।
মাটির আর্দ্রতা : মাঠ ক্ষমতা আর্দ্রতায় বিযোজন হার বেশি (আর্দ্রতা ২০ থেকে ৩০\%)।
মাটির তাপমাত্রা : ২৫ থেকে ৩৫ সে: তাপে বিযোজন হার বেশি।

বুনট জজৈব পদার্থ

জৈব পদার্থ সম্পন্ন দো-আাশ বুনটের মাটি ইউরিয়া বিযোজনের জন্য অধিক উপযোগী।

ইউরিয়া আর্দ্রবিশ্লেষণ প্রক্রিয়া

ইউরিয়া আর্রবিপ্লেষণের প্রকৃত প্রক্রিয়া সৃক্ষ্ৰভাবে এখনো সনাক্ত করা সষ্তব হয় নাই। আলেক্জান্ডার (১৯৭৭)-এর মতে ইউরিয়া বিযোজনের বিক্রিয়া নিম্নরাপ :

$$
\left(\mathrm{NH}_{2}\right)_{2} \mathrm{CO}+\mathrm{H}_{2} \mathrm{O} \text { ইউরিয়িজ্ এনজাইম } \mathrm{NH}_{2} \mathrm{COONH}_{4} \rightarrow 2 \mathrm{NH}_{3}+\mathrm{CO}_{3}-
$$

जথবা $\left(\mathrm{NH}_{2}\right) \mathrm{CO}+\mathrm{H}_{2} \mathrm{O}$ ইউরিয়েজ এনজाइম $2 \mathrm{NH}_{4} \mathrm{CO}_{3}$
বিভিন্ন বিজ্ঞেনীর দেওয়া বিক্রিয়া সূত্র ও ব্যাখ্যা পর্যালোচনা করলে দেখা যায় যে, আর্দ্রবিশ্লেষণ প্রক্রিয়া ধরন অনেকাংশে মাটির গুণাবলীর উপর নির্ভর করে। আর্দ্রবিশ্লেষণ প্রক্রিয়ায় উৎপাদিত মধ্যম ও সমাপ্তি দ্রব্য এবং স্থায়িত্ব প্রধানত মাটির অম্লমমান, আর্দ্রতা ও তাপমাত্রার উপর নির্ভর করে।

ইউরিয়ার কৃষিতাত্ত্বিক ব্যবহারে আর্দ্রবিশ্লেষণের গুরুত্ব

১. ইডিরিয়েজ কার্যাবলী কম হলে এবং প্রয়োগের পর বৃষ্টিপাত ইউরিয়া সারের চুয়ানী অপচয় ঘটায়।
২. চুনযুক্ত শুকনো মাটিতে প্রয়োগ করলে বায়বীয় এমোনিয়া উৎপাদ্তিত হয়ে উল্লেেখযোগ্য পরিমাণে নাইট্রোজেনের অপচয় হয়।
৩. চুনযুক্ত ক্ষারীয় মাটিতে অনুকূল তাপ ও আর্দ্রতায় অধিক পরিমাণ ইউরিয়া প্রয়োগের আর্রবিশ্লেষণ দ্রুত হলে বিষাক্ত নাইট্রাইট $\left(\mathrm{NO}_{2}-\right)$ উৎপাদিত হতে পারে।
8. মাটির অম্লমান সাময়িকভাবে বেড়ে যায়।
৫. আর্দ্রবিক্লেষণ বিলম্বিত হলে উদ্ভিরের নাইট্রোজেন পুষ্টি ব্যাহত হয়।

এমোনিয়া উদ্বায়ন (Volatilization)
মৃত্তিকা বিশেষে এমোনিয়া উদ্বায়ন ইউরিয়ার একটি প্রধান অসুবিধা। এমোনিয়াম উদ্বায়ন প্রক্রিয়াটি নিচে উল্ল্রেখ করা হলো :

ক. $n\left(\mathrm{NH}_{4}\right)_{2} \mathrm{Y}+\mathrm{nCaCO}_{3} \rightarrow \mathrm{n}(\mathrm{NH})_{\mathrm{Z}} \mathrm{CO}_{3}+(\mathrm{Ca})_{\mathrm{n}}(\mathrm{Y})_{\mathrm{x}}$
ข. $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{CO}_{3}+\mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{NH}_{3} \uparrow+\mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{3}^{--}$

$$
2 \mathrm{NHOH} \leftarrow \mathrm{PH}^{\mathrm{H}}
$$

এক্ষের্রে, Y ঋণাত্মক আয়ন n, x, z যোজনী
-উপরোক্ত বিক্রিয়ায় দেখা যায় যে, ইউরিয়া থেকে উৎপাদিত এমোনিয়া বৌগের ক্যালসিয়াম কার্বনেটের সাথে বিক্রিয়ার ফলে এমোনিয়াম কার্বনেট উৎপন্ন করে। মাটির সাথে ইউরিয়ার বিক্রিয়ার ফতে (চুনযুক্ত মাটি) এমোনিয়াম কার্বনেট উৎপন্ন হয়। এই এমোনিয়াম কার্বনেট ক্ষারীয়, বিক্রিয়ায় এমোনিয়াম হাইড্রোক্সাইড উৎপন্ন করে। এমোনিয়া হাইড্রোক্রাইড তারপর এমোনিয়া উৎপন্ন করে। ইউরিয়াকে উদাহরণ হিসেবে নিচে উপরোক্ত সকল বিক্রিয়া নিম্নকৃপে সাজানো যায়-

$$
\begin{aligned}
& \mathrm{CO}\left(\mathrm{NH}_{2}\right)_{2} \rightarrow\left(\mathrm{NH}_{4}\right)_{2} \mathrm{CO}_{3} \\
& \left(\mathrm{NH}_{4}\right)_{2} \mathrm{CO}_{3} \rightarrow \mathrm{NH}_{4} \mathrm{OH} \\
& \mathrm{NH}_{4} \mathrm{OH} \rightarrow \mathrm{NH}_{3}
\end{aligned}
$$

এমোনিয়া উদ্বায়ননর অসুবিধা
১. এমোনিয়া হিসেবে নাইট্রোজেনের অপচয় হয়।
২. নাই্টাইট জমা হয়ে উদ্ডিদে বিষাক্ততা সৃষ্টি করতে পারে।
৩. এমোনিয়া ও নাইট্টাই্ট বীজের অब্কুরোদগমে বিঘ্ন সৃষ্টি করে।
১. ইউরিয়া আর্র্রবিশ্লেষণ : বাংলাদেশের মৃত্তিকা পরিবেশে লেখক (১৯৮-০) পরিচালিত গবেষণার ফলাফল নিচে (সারণি ১৪) উল্লেV করা হলো।

সারণি ১৪ : বাললাদেশের বিভিন্ন মৃত্তিকায় ইউরিয়েজ কার্যাবলীভিত্তিক ইউরিয়ার আর্দ্রবিশ্লেষণ হার

মৃত্তিক	প্রতি ৫ ঘন্টায় বিযোজন পিপি এম ইউরিয়া
চুনযুক্ত পলিমাটি	১২০-১৮০
গাঢ় ধৃসর পলিমাটি	-00-800
বরের্দ্র उ লাन মাটি	২৬০-২৯০
কশ उ চा মৃক্তিকা (তীব্র অয্ఘীয় মাটি)	90-৯০
লোনা পলিমাটি	200-১৯0

২. নাইট্রাইট উৎপাদন : চুনযুক্ত মাটিতে ইউরিয়া প্রয়োগের ৩ থেকে ৫ দিনের মধ্যে ৭০ থেকে ৮০ পিপিএম (১২০ পিপিএম হারে প্রদত্ত ইউরিয়া) নাই্দাইট উৎপাদিত হতে পারে।

সাধারণত ১০ পিপিিএম $\left(\mathrm{NO}_{2}-\mathrm{N}\right.$ মাঠ বা সবজি ফসলের জন্য বিষাক্ত হতে পারে বিশেষ করে চারা বয়সে।
৩. অম্লমান বৃদ্ধি : প্রশম ও চুনযুক্ত মাটিতে গড়ে ০.২ একক অম্লমান বেড়ে যায়।
8. এমোনিয়া উদ্বায়ন : চুনयুক্ত মাটিতে ১২০ পিপিএম হার প্রদত্ত ইউরিয়া নাইট্রেজেনের ১২\% থেকে ২০\% উদ্বায়ন হতে পারে (এমোনিয়া হিসেবে উদ্ধার প্রয়োগের প্রথম সপ্তাহে)।
৫. বীজের অழ্কুরোদ্মম : চুনযুক্ত মাটিতে পাটীীজের অভকুরোদগম হ্রাস প্র:য় ৪\% থেকে © $0 \% 1$

নাইট্রটট উৎপাদন

এমোনিয়াম সালফেট এবং এমোনিয়াম ফসফেটসহ অন্যান্য বেশ কয়েকটি নাইট্টোজেন সারের চেয়ে ইউরিয়া থেকে নাইট্রেট উৎপাদন হার বেশ দ্রুত। সাময়িকভাবে অম্লমান বাড়ে বলে অয্লীয় মাটিতে এ ধরনের प্বরান্বিত নাইট্রিফিকেশন শীত মৌসুম্মের স্বল্পমেয়াদি ফসলের জন্য বেশ উপকারী। অনেক ক্ষেত্রে দ্রুত নাইট্রিফিকেশন নাইট্রেজেন অপচয়েরও প্রধান কারণ হ্েে পারে। নাইট্টেট উৎপাদন এরপর (ইউরিয়া প্রয়োগের পর) মাটির অম্লমান কিছুটা বেড়ে যায়। চুনযুক্ত মাটিতে ইউরিয়া প্রয়োগ করে অধিক পরিমাণ নাইট্রাইট উৎপাদন করলে নাইট্রেট উৎপাদন কিছুটা ব্যাহত হয়।

8। এমমানিয়াম সার

এমোনিয়াম সালফেট, এমোনিয়াম ফসফেট ও অন্যান্য সার।

এমোনিয়াম সালফেট

এমোনিয়াম সালফেট নাইট্রোজেনে সার হিসেবে বেশ পুরানো। মাটিতে প্রয়োগের পর এই সার $\mathrm{NH}_{4}{ }^{+}$এবং $\mathrm{SO}_{4}{ }^{--আ য ় ন ে ~ ব ি য ে া জ ি ত ~ হ য ় । ~ ম া ট ি ত ে ~ ক র ্ দ ম ~ ক ণ া র ~ প র ি ম া ণ ~ ব ে শ ি ~}$ থাকলে অধিকাংশ $\mathrm{NH}_{4}{ }^{+}$সংযোজিত হয়। প্রধানত $\mathrm{Ca}^{++} \mathrm{Mg}^{++} \mathrm{K}^{+}$প্রতিস্থাপন করে এমোনিয়াম সংযোজিত (fixed) বা উপশোষিত (asorbed) হয়। পরবর্তী সময়ে এই এমমানিয়াম খীরে ধীরে বিমুক্ত হয়ে নাইট্রিফিকেশন প্রক্রিয়ায় অংশগ্রহণ করে। মাটিতে এমোনিয়াম সালফেট রাপান্তরের বিক্রিয়াগুলোকে নিম্নরূপ উল্লেখ করা যায়।

क. $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4} \xrightarrow[\text { बिप্যেজন }]{\longrightarrow} \mathrm{NH}_{4}^{+}+\mathrm{SO}_{4}$

 Ca++

এম্যেনিয়াম ফসঙ্যেট

এমোনিয়াম ফসফেট সারের রূপান্তর বিক্রিয়াও একই ধরনের। এক্ষেত্রে ক্যালসিয়াম -সালফেটের বদলে ক্যালসিয়াম ফসফেট উৎপাদিত হয়।

মোটামুটিভাবে এমোনিয়াম সালফেট ও এমোনিয়াম ফসফেট সারের মৃত্তিকা রাপাস্তরে প্রধান 8 টি ভাগে ভাগ করা যায় যথা-

প্রথমত், এমোনিয়াম এবং ঋণাত্মক আয়নে $\left(\mathrm{PO}_{4}{ }^{--}\right.$or $\left.\mathrm{SO}_{4}{ }^{--}\right)$বিযোজিত इওয়া ;

দ্বিতীয়ত, কিছু পরিমাণ কর্দমে সংযোজিত হওয়া বা উদ্ডিদ কর্তৃক পরিশোষিত शওয়া ;

তৃতীয়ত, কিছু পরিমাণ মৃত্তিকা কর্দমে উপশোষিত হওয়া ;
চতूর্থত, কিছू পরিমাণ $\mathrm{Ca}^{++} \mathrm{Mg}^{++} \mathrm{K}^{+}$প্রতিস্থাপন করা, যার ফলে মাটির অম্লচ্ব বাড়তে পারে।

দ্বিতীয় পর্যায়ে উপশোষিত ও সংযোজিত এমোনিয়াম নাইট্রিফিকেশন বিক্রিয়ায় অংশগ্রহণ করে এবং উস্ডিদের জন্য প্রাপ্য নাইট্রেট উৎপাদন করে। এমোনিয়াম সালফেটের অফ্ল সমাब্ক (Eq. acidity) ১>০। মাটিতে ক্যালসিয়াম ও ম্যাগনেশিয়ামের পরিমাণ কম থাকলে এবং বেশি পরিমাণে এমোনিয়াম সালফেট প্রয়োগ করলে মাটির অম্লত্ব দ্রুত বাড়তত থাকে।

চা, কফি, আনারস, ধান, গোলআলু, বার্লি, ভুট্টা, প্রভৃতি ফসলের জমিতে এমোনিয়াম সালফেটের কার্যকারিতা বেশ সন্তোষজনক। কারণ এসব গাছ এমোনিয়াম আকারে বেশ কিছু নাইট্রাজেন গ্রহণ করতে পারে। মাটিতে অম্লত্ অপরিবর্তিত রাখতে হলে ১ টন এমোনিয়াম সালফেটের সাথে দেড় টন গুঁড়া চুন প্রয়োগের প্রয়োজন হয়।

চিলিয়ান নাইট্রেট

د৮o৯ সালে বিজ্ঞেনী হেন্কি (Haenke) চিলিতে এই অবক্ষেপ আবিষ্কারের পর কৃষি জমিতে এটি প্রায় এক শতাব্দী যাবৎ ব্যাপকভাবে ব্যবशৃত হয়েছে। অবশ্য এরপর কৃত্রিম সোডিয়াম নাইট্রেট উৎপাদিত হয়েছে।

চিলিয়ান নাইট্রেটের বর্ণ সাদাটে, পানিতে দ্রবণীয়, পানিগ্রাহিতা বেশি। মাটিতে অনেকদিন ব্যবহার করলে অতিরিক্ত সোডিয়াম মাটির সংযুক্ত বিনষ্ট করতে পারে। এর কারাষ্ক প্রায় ৩৬। অম্লীয় মাটিতে প্রয়োগ করলে ধীরে মীরে অম্লমান বেড়ে যেতে পারে। বৃষ্টিবহুল এলাকায় এই সার থেকে নাইট্রেট অপচয় বেশি হয়। স্বলপমেয়াদি শাক-সবজি ফসলের জন্য•এ ধরনের নাইটটটে সম্পন্ন সারের কার্যকারিতা বেশি। কারণ এতে নাইট্রিফিকেশন প্রয়োজন হয় না। মাটিতে প্রয়োগের পরপরই উড্ডিদ তা সারাসরি পরিশোষণ করতে পারে।

এমোনিয়াম সালফেটের দ্রবণীয়তা 0° সে 0 -৬ গ্রা/১০০ গ্রাম পানি

$$
\text { ১00 }{ }^{\circ} \text { সে -১০৪.০ গ্রা/১০০ গ্রাম পানি }
$$

এনহাইড্রাস এম্মানিয়া

জার্মানিতে সর্বপ্রথম ১৯১৩ সালে হেবার বস (Haber Bosch) পদ্বতিতে নাইট্রোজেন ও হাইড্রোজেেের রাসায়নিক মিশ্রণ ঘটিয়ে বাণিজ্যিকভাবে এনহাইড়াস এমোনিয়া উৎপাদন করা হয়। যুক্তরাঁ্ট ১৯২০ সালের দিকে কয়েকটি কারথানায় এর উৎপাদন শুরু হয়। ১৯৬৩ সন পর্যন্ত যুক্তরাট্টে ৮০টিরও বেশি কারখানা স্থাপিত হয়.এবং বার্ষিক ৫ মিলিয়ন টন নাইট্রোজেন উৎপাদিত হয়। ১৯৮০ সনে এই পরিমাণ দাঁড়ায় প্রায় ১৭ মিলিয়ন টন। সরাসরি প্রয়োগ ছাড়াও এমোনিয়া দ্রব্য অন্যান্য নাইট্রোজেন সার উৎপাদনে ব্যবহৃত হয়।

সাধারণ তাপ ও চাপে এনহাইদ্রাস এমোনিয়া ঝাঁঝালো গন্ধযুক্ত বর্ণহীন গ্যাস। তরল ঘনত্ব ২২৭ কেজি/গ্যালন (৩.৮ লিটার)। ১00 সেন্টিগ্রেড তাপে এনহাইড্রাস এমোনিয়া ৫.২৮ কেজি/বর্গ সেমি. চাপ সৃষ্টি করে। ৩৮০ সে তাপে এই চাপ হয় ১৩.৯ কেজি/বর্গ সেমি.। স্টিলের (steel) ট্যাষ্ক বা প্লাস্টিক পাত্রে এই এমোনিয়া রাখায় পাত্রের তাপ সহ্য ক্ষমতা ১৮.৬ কেজি/বর্গ সেমি. হওয়া দরকার।

এমোনিয়া উৎপাদনে নাইট্রাজেনের উৎস বায়ুমণ্ডল এবং হাইজ্রোজেনের উৎস পানি, ন্যাফথা, প্রাকৃতিক গ্যাস $\left(\mathrm{CH}_{4}\right)$ ও কয়লা বা তেল।

নিচে এমোনিয়া উৎপাদনের বিক্রিয়াটি উপস্থাপিত হলো।
$\mathrm{N}_{2}+3 \mathrm{H}_{2} \xrightarrow[\text { হেবার-বস পদ্ধতি }]{-----\mathrm{NH}_{3}}$
এই বিক্রিয়া তাপ উৎপাদনকারী (Exothermic) $\gg .0\left(\mathrm{KCal} \mathrm{NH}_{3}\right)$ । মৌল এনহাইদ্রাস এমোনিয়াতে প্রায় ৮২\% নাইট্রোজেন থাকতে পারে। ওজন ভিত্তিতে পানিতে ৩0\% পর্যন্ত এমোনিয়া দ্রবণ তৈরি করা যায়। এর নাম একুয়া এমোনিয়া (প্রায় ২৪\% নাইট্রোজেন)

জমিতে প্রয়োগ করার সাথে সাথে প্রয়োগ স্থানের pH ৯.০ পর্যন্ত বেড়ে যেতে পারে। কিন্তু উষ্ণ পরিবেশে এবং সবাত পরিবেশে এই এমোনিয়া অণুজীব দ্বারা নাইট্রেট পরিণত হয়ে মাটিতে pH কমিয়ে আনতে थাকে।) কেজি $\mathrm{NH}_{3}-\mathrm{N}$ এর জন্য ১. ৭৮ কেজি চুন $\left(\mathrm{CaCO}_{3}\right)$ এই অম্নড্ব প্রশমন করতে পারে।

নাইট্টেজেন দ্রবণ সার

মাটির উপরিভাগে বা গাছে পাতায় চাপবিহীন নাইট্রোজেন দ্রবণ সার প্রয়োগ পদ্ধতি বেশ প্রাচীন। বলু উপাদানিক সার প্রস্তুতের ক্ষেত্রেও নাইট্রেজেন দ্রবণ ব্যবহার করা হয়। সরাসরি মৃত্তিকা প্রয়োগের উপযোগী নাইট্রোজেন দ্রবণে ২০ থেকে ২৪\% নাইট্রোজেন থাকে। চাপ গড়ে 80° সেঃ জাপে $0 . ৭ ০$ গ্রাম/বর্গ সেমি.।

তরল্ নাইট্রোজেন সারের অতিরিক্ত সুবিষা

১. কীটনাশক, রোগনাশক ও আগছানাশকের সাথে তরলকারী দ্রব্য হিসেবে নাইট্রেজেন দ্রবণ ব্যবহার করা যায়।
২. সেচের পানির সাথে ব্যবহার করা যায়। তাই প্রয়োগের জন্য অতিরিক্ত ব্যয় शয় ना।
৩. অনেক দ্রবণ অত্রিতুত কার্যকর হয়।

নাইট্রোজ্রেন দ্রবণের বৈশিষ্ট্য

বর্ণহীননত, গন্ধহীনতা এবং লোনা স্বাদ নাইট্রাজেন দ্রবশের কয়েকটি প্রধান প্রধান বৈশিষ্ট্য। অবশ্য সনাক্তকরণ ও ব্যবসার সুবিধার জন্য কোন কোন কোম্পানি/প্রতিষ্ঠান বর্ণ দ্রব্য প্রয়োগ করে। এমোনিয়াম নাইটেটের পানি দ্রবণে নাইট্রেজেনের পরিমাণ স্ক্রেলভাবে হাইড্রোমিটার দ্বারাও নির্ণয় করা যায় (ঘনত্ব বা আপেকিকি গুরুুত্ব নির্ণয়ের মাধ্যমে)। নাইট্রোজেন দ্রবণসমূহ নিম্নরাপ হতে পারে যথা-
১. এমোনিয়া, এমোনিয়াম নাইটেট্ ;
২. এমোনিয়া, ইউরিয়া ;
৩. এমোনিয়া, ইউরিয়া এমোনিয়াম নাইটেট ;
8. এমোনিয়াম নাইট্টেট;
৫. এমোনিয়াম নাইটuট, ইউরিয়া;
৬. বিবিধ দ্রবণ।

নাইট্রিক এসিড ও এমোনিয়াম বিক্রিয়া ঘটিয়ে এমোনিয়াম নাইট্টেট দ্রবণ উৎপাদন করা इয়

$$
\mathrm{HNO}_{3}+\mathrm{NH}_{3} \longrightarrow \mathrm{NH}_{4} \mathrm{NO}_{3}+23000 \mathrm{Cal} \text { (exothermic) }
$$

সার হিসেবে ব্যবহারের জন্য নাইট্দোজেন দ্রবণের ৩টি বিশ্ষযাবে উম্লেখযোগ্য-
১. বাশ্পচাপ ;
২. কেলাসন তাপ ;
৩. দ্রবণের সং্রক্ষণ পাত্রে ক্ষয়ধর্মী প্রভাব।

সারণ ১৫ : নাইট্রোজেন দ্রবণের পরিমাণ ও প্রয়োগ হার (লিটার/হেক্টর)

প্রয়োজনীয় নাইট্রোজেন কেজি/হেক্টর	এমোনিয়াম নাইট্টে (১৯\%) - निটার/হেক্টর)	এমোনিয়াম নাইট্টেট + ইউরিয়া (00%) (निটার/হেক্টর)
२৫	১১০	৬৬
२०	b-q	¢8
00	১৩০	boo
88	১৯৫	১২০
৫৫	২80	28
৬く	২৮-২	১৭৩
98	৩২৫	২००
300	808	২৬৫
কেলাসন তাপ Kg N/l	- २৩	-.৩৯
	১° সে	-030 0°
	২১\%->0 ${ }^{\circ}$ সে	৩২\%-0 ${ }^{\circ}$ সে

৫। ফসফরাস সার

বর্তমান বিশ্বে প্রায় ৩০ ধরনের ফসফেট সার কৃষি জমিতে ব্যবহৃত হচ্ছে। এসব সারকে উৎস, প্রস্তুত পদ্ধতি ও দ্রবণীয়তার ভিত্তিতে বহুবিধভাবে শ্রেণিকরণ করা হয়েছে। উৎস ও প্রক্রিয়াকরণের ভিত্তিতে ফসফেট সারকে নিম্নরাপে ভাগ করা যায়-

ফসফরাস সারের প্রকার

ক. প্রাকৃতিক ফসফেটট সার-হাড় ও রক ফসফেট ;
খ. প্রক্রিয়াকৃত ফসফেট সার ;
সিদ্ৰ গুঁড়া করা হাড়ের গুঁড়া, হাইপার ফসফেট;
এসিড প্রক্রিয়াকৃত সুপার ফসফেট, ট্রিপল সুপার ফসফেট;
গ. শিষ্পজাত উপদ্রব্য-ক্ফারীয় ধাতুমল, অন্যান্য উপদ্রব্য;
ঘ. ককত্রিম ফসফেট-মনো এমোনিয়াম ফসফেট এবং ডাই-এমোনিয়াম ফসফেট (DAP)।
পশু-পাখির হাড় একটি প্রাকৃতিকভাবে প্রাপ্তু জৈব্য দ্রব্য বিশেষ। রক ফসফেট বা ট্রাইক্যালসিয়াম ফসফেট একটি প্রাকৃতিক খনিজ। রক ফসফেটের সাথে সালফিউরিক ও ফসফরিক এসিডের বিক্রিয়া ঘটিয়ে সুপার ফসফেট ও ট্রিপল সুপার ফসফেট উৎপাদন করা হয়। কারীয় ধাতুমল ইস্পাত কারখানায় একটি উপদ্রব্য। বাষ্পসিদ্ধ্ধ করে বা সরাসরি গুঁড়া করে হাড়ের গুঁড়া এবং রক ফসফেট গুঁড়া করে হাইপার ফসফেট উৎপাদন করা যায়।

সুপার ফসফ্টে

এই সারের অন্য নাম সাধারণ সুপার ফসফেট। ফসফেটজাতীয় সারের মধ্যে এই সার সবচেয়ে প্রাচীন। রক ফসফেটের সাথে সালফিউরিক এসিডের বিক্রিয়া ঘটিয়ে সুপার ফসফেট সার উৎপাদ্ন করা হয়। ১৮৪২ সালে ইংল্যান্ডে সর্বপ্রথম জন লয়েস সুপার ফস্সফেট তৈরির এই সৃত্র উম্ভাবন করেন। সেই সময় থেকে ১৯৭০ সাল পর্যন্ত সারা বিশ্বে সুপার ফসফেটের ব্যবহার সর্বাধিক ছিল।

$$
\left[\mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)\right]_{3} \mathrm{CaX}+7 \mathrm{H}_{2} \mathrm{SO}_{4} \longrightarrow 3 \mathrm{Ca}\left(\mathrm{H}_{2} \mathrm{PO}_{4}\right)_{2}+7 \mathrm{CaCaSO}_{4}+\mathrm{H}_{2} \mathrm{O}
$$

মনোক্যালসিয়াম ফসফেট।
X = ক্লোরো, ফ্লোরো, হাইড্রোক্সি- এপেটাইট হতে পারে।
সাধারণ সুপার ফসফেটের বর্ণ ধূসর-বাদামি থেকে সাদা, গুঁড়া বা দানাদার এবং এতে অষ্লীয় ঝাঁঝালো গন্ধ রয়েছে।

সমপরিমাণ (৬০ থেকে ৭0\%) সালফিউরিক এসিড এবং গুঁড়া করা রক ফসফেট (১০0 মেশ বা ও.১8 মিমি) চালুনি অতিক্রমকারী (৭২\% বিপিএল) রক ফসফেটের সাধারণিকৃত সূত্র Ca3 $\left(\mathrm{PO}_{4}\right)_{2}$ । তবে একটি নির্দিষ্ট সূত্র বা বিক্রিয়া হিসেবে নিম্নুর্পে উল্পেখ করা যায়।

$$
\mathrm{Ca}_{10}\left(\mathrm{PO}_{4}\right)_{6} \mathrm{~F}_{2}+7 \mathrm{H}_{2} \mathrm{SO}_{4}+3 \mathrm{H}_{2} \mathrm{O} \longrightarrow \underset{7 \mathrm{CaSO}_{4} \longrightarrow 2 \mathrm{HF}}{3 \mathrm{CaH}_{4}\left(\mathrm{PO}_{4}\right)_{2} \mathrm{H}_{2} \mathrm{O}}+
$$

সাধারণ সুপার ফসফেটে ওজনভিত্তিতে প্রায় 80% মনোক্যালসিয়াম ফসফেট এবং ৬০\% জিপসাম থাকে। এর অম্লমান প্রায় ৩.০। সুপার ফসফেটের প্রায় 8৫\% ফসফরাস পানিতে দ্রবণীয়।

প্রধান তিনটি কারণে জমিতে সুপার ফস্যেট্ট প্রয়োগ করে ফসলে ভাল সাড়া পাওয়া যায়-
১. এতে প্রায় ২০\% ক্যালসিয়াম থাকে;
২. ‘এতে প্রায় ১০ থেকে ১২\% সালফার থাকে;
৩. अধিকাংশ ফসফরাস পানি দ্রবণীয় $\left(\mathrm{H}_{2} \mathrm{PO}_{4}^{--}-৫ \%, \mathrm{HPO}_{4}^{--}+\mathrm{PO}_{4}\right.$

$$
=د(\pi) ;
$$

8. কিছু পরিমাণ $\mathrm{Mg}, \mathrm{Fe}, \mathrm{Cu}, \mathrm{Mn}, \mathrm{Zn}, \mathrm{Cl}$ থাকে;
৫. এমোনিয়াম সংযুক্ত করে ব্যবহার করা যায়।

এমোনিয়া ফসফেট

এমোনিয়ামের সাথে ফসফরিক এসিডের বিক্রিয়া ঘটিয়ে এমোনিয়া ফসফেট সার উৎপাদন করা হয়। বর্তমান যুগে এমোনিয়াম ফসফেট শীর্ষস্ছানীয় সার দ্রব্য। এই জনপ্রিয়তার প্রধান প্রধান কারণ হচ্ছে-
১. ফসফেটের পরিমাণ বেশি;
২. পানি দ্রবণীয়তা বেশি ;
৩. অনুকূল ভৌত আকার ও গঠন উত্তম;
8. নাইট্রাজেনও প্রয়োগ করা হয়ে থাকে।
৫. সার মিশ্রণে বা জাটিল সার ব্যবহারে সুবিধাজনক। এই সার প্রধানত ২ প্রকার যথা মনোএমোনিয়াম ফসফেট ও ডাইএমোনিয়াম ফসফেট।

সারণি ১৬ : সুপার ফসফেট সারের গঠন (\%)

नाম	পরিমাণ	নাম	পরিমাণ
ফসফর্রা (P)	ふ	অক্রিজেন, হাইড্রোজেন	
ক্যালসিয়াম	२०	লোহ, এলুমিনিয়ামও সिलिকা	ca
সালফার	১২		

বৌগভিত্তিক

नाम	পরিমা	नाম	পরিযাণ
জিপসাম	or	মনোক্যানসিয়াম ফসফেট পানি फ्रবণীয়	00
আর্দ্রত	२	ডাইক্যালসিয়াম ফসসেটট পানি जद्यदनीয়	৯
দ্রাইক্যাनসিয়াম ফসকেটট ধীর फ्रववीয়	২	আয়রনন/এলুমিনিয়াম অশ্রাইড্ড 3 मिलिকা	a

দ্রবনীয়ত অনুসার্র ফসফফটটর শ্রেণিকরণ

পানি ও সাইট্রিক এসিডে দ্রবণীয়ত অনুসারে ফস<েট সার প্রধানত ৩ প্রকার যथা-

3. পাनि দ্রবרীয় ফসফ্ফট

এমোনিয়াম ফস্যফেট ও পটাশিয়াম ফসফেট পানিতে দ্রবনীয়। সুপার ফসফেট ও টিএসপির

২. সাইটিক এসিড দ্রবনীয় ফসফ্টে

পানিতে আদ্ববীয় কিন্ত শতকরা। ১ ভাগ সাইট্রিক এসিডে দ্ববণীয়। এই সারের মধ্যে প্রধান ছচ্ছে ডাইক্যালসিয়াম ফস<ফেট। কার্यকারিज ম্্যম। অज্লীীয় মাট্তিত কার্यকারিত কিছুটা बেশি।
৩. সাইট্রিক এসিড অদ্রবণীয় ফস্সফট

পানি বा সাইটিক এসিডে জদ্पবীয়। बেমন शাড়ের গুড়া ও ট্রাইক্যালসিয়াম ফসফেট্ট
 দोर्ष्राश़ी।

ফ্সফ্টে ভ্যীগের পানি দ্রবনীয়তত (১৫ঃ সে. তাপে)

ডাই-এম্মেনিয়াম ফসফফটট ৬৫\% ডাইক্যাनসিয়াম ফস্সফেট 0.0২\%

মনোক্যালসিয়াম ফস্স<েট য.৮\%

ढिপन সুপার ফসख্ট

রক ফসফেটটের সাথথ ফস্সফরিক এসিডের বিক্রিয়া ঘটিয়ে ট্রিপল সুপার ফসফেট উৎপাদন কারা হয়।

১৮৯০ সালে সর্বপ্রথব্রে Uিপল সুপার ফস্সফেট্ট উৎপাদনের প্রক্রিয়া শুরু হয়। ১৯০৭ সালে সর্বপ্রথম বা⿵冂ি্যিকভাবে টিএিপপি উৎপাদন আরার্ভ হয়।

খনীভূত সুপার ফস<্টে (SP)
টেনিসি ভ্যালি (TVA) উৎপাদিত मि এস পি সারে ৫৪\% ফস্স<েটট ও २8\% ফসফকরাস থাকে। সি এসপির পৃর্ণ নাম ঘনী ভূত বা ঘন (concentrated) সুপার ফসফফেট সি এস পির
 শুকিয়ে গিয়ে সারে (েবল) ভাগ পানি থাকে। সি এস পির ৮০ থেকে ৯o ভাগ ফসফেট পানি দ্রবণীয়। এম্মেনিয়যযুফ্ত্করণ (ammoniation) প্রক্রিয়ায় ১০ কেজি ফসফেট ১.০০ থেকে). ৫ কেজি এমোনিয়া শোষণ করতু পার্।
উৎপাদনপ্রক্রিয়া
রক ফসয়ে্ট + সুপার ফসসফরিক এসিড = সি এস পি (TVA পদ্ধতি) সুপার ফসফরিক এসিডের অপর নাম এনহাইড্রাস ফসফরিক এসিড।

$$
\mathrm{H}_{6} \mathrm{PO}_{4}+\mathrm{H}_{4} \mathrm{P}_{2} \mathrm{O}_{7} \xrightarrow[\text { পলিফসফ্সরিক এসিড }]{\Delta} \mathrm{H}_{5} \mathrm{P}_{3} \mathrm{O}_{8}+\mathrm{H}_{2} \mathrm{O} \uparrow
$$

সুপার ফসফরিক এসিডের অধিকাংশই পাইরোফসফরিক $\left(\mathrm{H}_{4} \mathrm{P}_{2} \mathrm{O}_{7}\right)$ এসিড জাতীয়.।

অর্থা-ফসফরিক এসিড + পলি ফসফরিক এসিড = সুপার ফসফরিক এসিড।
সাদা এসিড (বিদ্যুৎ পদ্ধতি), সবুজ এসিড (সিক্ত পদ্ধতি)
ট্রিপল সুপার ফসফেট উৎপাদনের বিক্রিয়া নিম্নরূপ
$\mathrm{Ca}_{10}\left(\mathrm{PO}_{4}\right)_{6} \mathrm{~F}_{2}+14 \mathrm{H}_{3} \mathrm{PO}_{4}+1 \mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{O} \longrightarrow 2 \mathrm{HF}$
টিএসপি ও এসপির মধ্যে প্রধান পার্থক্য হচ্ছে যে, টিএসপি থেকে এসিড অপসারণ করা হয় এবং ফসফেট থাকে মনোক্যালসিয়াম ফসফেট মনোহাইড্রেট হিসাবে। (80 থেকে ৪৫\% $\mathrm{P}_{2} \mathrm{O}_{5}$), ১২ থেকে ১৬\% $\mathrm{Ca}, ~ ১$ থেকে ২\% S) অধিকাংশ ফস্সফেট পানি দ্রবণীয়। মিশ্র সারেও এই দ্রব্যের ব্যবহার রয়েছে। এই সার উৎপাদনে সালফিউরিক এসিডের বদলে ফসফরিক এসিড ব্যবহার করা হয়।

রক ফসফেট

রক ফসফেটে প্রধানত ট্রাই-ক্যালসিয়াম আকারে ফসফেট অবস্থান করে। এর সাথে সাথে $\mathrm{Ca} \mathrm{CO} 3, \mathrm{CaF}_{2}, \mathrm{Ca}(\mathrm{OH})_{2}$ এবং CaCl_{2} এদের প্রাথমিক খনিজকে এপেটাইট বলে।

এপেটাইটটর সাধারণ রাসায়নিক সূত্র
[$\left.\mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}\right] \mathrm{CaX}$ অথবा $\left[\mathrm{Ca}_{10}\left(\mathrm{PO}_{4}\right)_{6} \mathrm{X}\right]$
এক্ষেত্রে, $\mathrm{X}=\mathrm{CO}_{3}, \mathrm{Cl}_{2}, \mathrm{~F}_{2}, \mathrm{SO}_{4},(\mathrm{OH})_{2}$
রক ফসযেট চার প্রকার হতে পারে যথা-
১. কঠিন শিলা (Hard rack) ফসফেট;
২. কোমল (Soft) ফসফেট;
৩. ভূমি নুড়ি (Land pebbles)ফস্সফেট;
8. নদী-নুড়ি (River pebbles) ফসফেট।

যুক্তরাষ্ট্রে টেনেসি ও ফ্লোরিডায় পর্যাপু ফসফেট খনিজ পাওয়া যায়। ফ্লোরিডার কঠিন শিলা ফসফেটে প্রায় ৭৮ থেকে ৮০ ভাগ রয়েছে। যুক্তরাষ্ট্ট ছাড়াও কুরাকাও
(Curacao) দ্বীপ, মরকক্কে (Morocco) এবং তিউনিসে (Tunis) উন্নতমানের ফসফেট অবক্ষেপ পাওয়া যায়।

রক ফসফেটের কার্যকারিতা প্রসঙ্গে ইউ, এস, জোনস (১৯৫৩) এর মতামত -
১. সুপার ফসফেটের তুলনায় পরিমাণ রক ফসফেট প্রয়োগ করলে তুন্না, তৃণভূমি ও গোমটরের ফলন বৃদ্ধি প্রায় যথাক্রম্ শতকরা ৫৪, ৬), এবং ৭০ ভাগ (সুপার ফসফেটের ফলন বৃদ্ধি ১০০ হিসাবে)

- স. সুপার ফসফেটের তুলনায় রক ফসফেটের অবাশীষ্ট প্রভাব মার্র ৫০ ভাগ।

সারণি ১৭ : ফসফেট দ্রব্যের ক্ষার সমাভক (প্রায়) বা প্রশমন মান

দ্रব্য	প্রশমন মান	এক টন চুনের সমান, কেজি
রক ফ্সফেট	9	- -
ক্কারীয় ধাতুমন	90	১२१¢
ব্বাস্ট ফার্ন্নে স্ন্যাগ	90	১マ१৫

৬।পটাশিয়াম সার
উৎস দ্রব্যের প্রকৃতি ও প্রস্তুত প্রক্রিয়া অনুসারে পটাশিয়াম সারকে নিম্নরপেে ভাগ করা যায়-

পটাশিয়াম খনিজ

ভূ-পৃষ্ঠে প্রাকৃতিকভাবে অবস্থানরত প্রায় «০টি খনিজের মধ্যে প্রচুর পটাশিয়াম রয়েছে। এসব খনিজকে সামান্য মাত্রায় বিশুদ্ধ করেই বা বিশুদ্ধ না করেও ফ্সলের জমিতে ব্যবহার করা যায়। কতকগুলো উল্লেখযোগ্য খনিজের নাম উল্লেখ করা হললে।

ক. लবণ অবক্ষে

সিলভেনাইট বা সিলভাইট্ট $(\mathrm{KCl}), x \quad x=$ অবিশুদ্ধ দ্রব্য
কার্ন্নোইট $-\mathrm{KCl} . \mathrm{Mg} . \mathrm{Cl} .6 \mathrm{H}_{2} \mathrm{O}$
কেইনাইট - $\mathrm{KCl} . \mathrm{MgSO}_{4}, 3 \mathrm{H}_{2} \mathrm{O}$
লেংবিনাইট- $\mathrm{K}_{2} \mathrm{SO}_{4} . \mathrm{MgSO}_{4}$
খ. পানিতে কম দ্রবণীয় : পলি হেনাইট্ট
পলি হেপ্পাটাইস - $\mathrm{K}_{2} \mathrm{SO}_{4} \mathrm{Mg} \mathrm{SO} 4.2 \mathrm{CaSO}_{4} .2 \mathrm{H}_{2} \mathrm{O}$
গ. পানিতে ড্দ্রবণীয়
গ্লোকোনাই্ট - $\mathrm{KFeSi}_{2} \mathrm{O}_{6} .5 \mathrm{H}_{2} \mathrm{O}$
ফেন্নসপার - $\mathrm{KAl} \mathrm{Si}_{2} \mathrm{O}_{8}$
মাইকা —মাস্কোভাইট্ট ও বায়োটাইট।

সারণি ১৮: ফসফরাস সারের উপাদানিক গঠন

এসব দ্রব্যের মধ্যে সিলভিনাইটে শতকরা প্রায় ৬৩\%, কার্নেলাইটে ১৭, কেইনাইটে ১৯\%, লেংবিনাইটে ২৬\% এবং পলিহেলাইটে ১৫\% পটাশ রয়েছে। আধুনিক পটাশ সার

কারখানায় এসব খনিজ দ্রব্য বিশোধন ও কাজ্ষিত ভৌত আকার ও রাসায়নিক গুণাবলী প্রদান করে বাজারজাত করা হয়। বাল্লাদেশে এরকম কোনো vনিজ দ্রব্য এখনো পাওয়া যায় নাই। এজন্য পটাশজাতীয় যাবতীয় রাসায়নিক সার বা কাঁচামাল বিদেশ থেকে আমদানি করা হয়।

সামুদ্রিক পানি

সামুদ্রিক পানিতে $0.0 ৬ \%$ পটাশ, 0.১8\% ভাগ ম্যাগনেশিয়াম এবং 3.১\% ভাগ সোডিয়াম থাকে। আধুনিককালে সামুদ্রিক পানি থেকে পটাশিয়াম নিষ্কাশন করে তা থেকে পটাশিয়াম নাইট্রেট উৎপাদন করা হচ্ছে।

কাঠের ছাই

কাঠের ছাই কৃষি জমির জন্য অতি প্রাচীন সার। গাছের ডাল শাখা কঠঠের গুঁড়া ফসল নাড়া পোড়ানো ছাই প্রয়োগ জমিতে পটাশিয়াম সরবরাহ বাড়ায়। এসব ছাইয়ে ৫ থেকে ২৫ ভাগ পটাশ থাকে। উদ্ডিদের প্রকৃতি, বয়স ও পোড়ানো পর্যায়ের (degree of burning) উপর ছাইয়ের পটাশিয়ামের পরিমাণ নির্ভর করে। পটাশিয়াম ও অন্যান্য ক্ষারীয় নবণ বা আয়নের উপস্থিতির জন্য মাটিতে ছাইয়ের প্রভাব ক্ষারীয়। এই কারণে ইউরিয়া সারের সাথে কাছাকাছি স্शানে সদ্য ছাই প্রয়োগ অঙ্কুরোদম হার কমিয়ে দেয়।

ছাইয়ের উপাদানের মধ্যে পটাশিয়ামের পরই জ্ৈেব কার্বনের স্থান। তাই পটাশিয়াম সরবরাহের সাথে সাথে ছাই থেকে কিছুটা জৈব কার্বনও পাওয়া যায়। মাটিতে প্রয়োগের পর ১০ থেকে ১৫ দিনের মধ্যে উজ্তিদ ছাইয়ের পটাশিয়াম পরিশোষণ করতে সক্ষম হয়।

কচুরীপানা, কল্লাগাছ এবং Graminac গোত্রের গাছের খড়ের ছাইয়ে পটাশিয়ামের পরিমাণ তুলনামূলকভাবে বেশি। পটাশিয়াম সরবরাহ ছাড়াও ছাই জমিতে কতকগুলো পরোক্ষ উপকার করে থাকে যেমন-
১. ক্ষতিকর পোকা-মাকড়ের চলাচল রোধ করে। মাটির উপরে এবং গাছের পাতায় প্রয়োগ করলে এই উপকার পাওয়া যায়। গাছের পাতায় প্রায়োগ করুলে জাবপোকার অতিক্রম কমে যায়।
২. উই ও পিপড়াজাতীয় পোকার আকক্রণ কমায়।
৩. মাটির আর্দ্রতা বেশি হয়ে গেলে বিশেষ করে বীজতলায় আর্দ্রতা বেশি হলে ছাই তা কিছুটা শোষণ করে নিতে পারে।
8. ছাই মাটির আয়তনী ঘনত্ব কমায়।
৫. ছাই মাটির তাপ পরিশোষণ ও বায়ু চলাচলে সহায়তা করে।

তামাক কাণ্ড ও সামুদ্রিক আগাছা

ক. তামাক কাণ্ড (Tobacco Stover)

গাছ থেকে পাতা সংগ্রহের পর কাণ্ডসহ অবশিষ্টাংশ শুকিয়ে গুঁড়া করে পটাশ সার হিসেবে ব্যবহার করা যায়। এতে ৫ থেকে ৮ ভাগ পটাশ এবং ২ থেকে ৩ নাইট্রোজেন থাকে। কমপোশ্টেও এই দ্রব্য ব্যবহার করা যায়। মাটিতে প্রয়োগের পর অন্যান্য জৈব পদার্থের মতোই এই দ্রব্য বিযোজিত হয়ে পটাশিয়াম বিমুক্ত করে। কাত্ড দ্রব্যের গুঁড়া

যতো সূক্ম হয় বিযোজন হার ততো বাড়ে। মাটিতে পর্यাপ্তু আর্দ্রত থাকলে বিযোজন প্রক্রিয়া ২০ থেকে ৩০ দিনেই অনেক এগিয়ে যায়। অতএব বলা যায়, তামাক কাণু দ্রব্যের প্রধান ৩টি কাজ রয়েছে যথা- পটাশ সরবরাহ, নাইট্রোজেন সরবরাহ ও জৈব পদার্থ প্রদান।

च. সামুদ্রিক আগাছা (Sea weeds)
সামুদ্রিক আগাছ সারের অপর নাম গরীবের সার। সমুদ্রোপকৃলবর্তী এলাকায় এসব আগাছাকে সবুজ সার হিসেবে ব্যবহার করা যায়। খামারজাত সারের তুলনায় এতে যথেষ্ট পরিমাণ পটাশ ও নাইট্রোজেন রয়েছে। সামুদ্রিক আগাছার মধ্যে (kelp) আগাছা বেশ গুরুত্নপূর্ণ। এদের বৃদ্ধি দ্রুত, উচ্চতা বা লশ্বায় প্রায় ২৫ থেকে ৩০ মিটার হতে পার। কেল্পের ছাইয়ে > ২৫\% ভাগ পটাশ থাকতে পারে।

মিউরেট অব পটাশ (KCl)

সিলভেনাইট ও কাররেলাইট প্রাকৃত্কি খনিজ থেকে রাসায়নিক প্রক্রিয়াকরণের মাধ্যমে এই সার উৎপাদন করা হয়। সারা বিশ্বের মোট পটাশ জাতীয় রাসায়নিক সারের মধ্যে মিউরেট অব পটাশের স্ছান প্রথম এবং পরিমাণে শতকরা প্রায় ৮০ ভাগ।

মিউরেট অব পটাশ সারের বর্ণ সাদা থেকে লালচে। উৎস খনিজের প্রকৃতি, সারের গ্রেড বা বিশ্লেষণ (analysis) এবং দানার আকার-প্রকৃতি (গুঁড়া বা দানাদার) অনুসারে বর্ণে পার্থক্য হয়ে তাকে। প্রয়োগের পর মিউরেট जব পটাশ মাটিতে এর অম্লমানে তেমন পরিবর্তন আনে না। মৃত্তিকা দ্রবণে এর বিক্রিয়া নিম্নরপপ উপ্লেে করা যায় (সাধারণিকৃত)।

$$
\text { কर्मম/ কनয়ড } \frac{\mathrm{Ca}}{\mathrm{Ca}}+2 \mathrm{KCl} \rightarrow \text { কर्मম/কलয়ড } \mathrm{K}^{\mathrm{K}}+\mathrm{CaCl}_{2}
$$

বিযোজিত পটাশিয়ামের একটা অংশ মৃত্তিকা দ্রবণে থেকে যায়, অপর অংশ বিনিময়ী ও অবিনিময়ীভাবে কর্দমে সংযোজিত বা উপশোষিত হয়। মাটিতে কর্দমের পরিমাণ বেশি থাকলে, পারিবেশিক অবস্থা একান্তরভাবে শুকনো-ভিজা হলে পটাশিয়াম সংযোজন বৃদ্ধি পায়। মাটিতে চুন প্রয়োগ করলে পটাশিয়াম সংযোজন কলে যায়।

মিউরেট অব পটাশ উৎপাদন

বিশ্বের প্রধান পটাশ খনিজ উৎপাদনকারী দেশ হচ্ছে কানাডা। ১৯৪৩ সনে সিলভেনাইট নামে প্রাকৃতিক অবক্ষেপ সেখানে পটাশ দ্রব্য আবিষ্কৃত হয়। পটাশিয়াম ক্লোরাইড ও সোডিয়াম ক্লারাইড $(\mathrm{KCl}+\mathrm{NaCl})$ সমন্থয়ে সিলভেনাইট গঠিত। সিলভেনাইট থেকে সোডিয়াম ক্লারাইড অপসারণের জন্য ২টি পদ্ধতি অবলম্বন করা যায় যথা-

ক. ভাসমান পদ্ধতি (Floatation);
খ. কেলাসন পদ্ধতি (Crystallization)
ভাসমান পদ্ধতিতে পটাশিয়াম ক্লোরাইড এবং সোডিয়াম ক্লোরাইড মিশ্তণণ সামান্য পরিমাণ বিশেষ প্রকার ভাসমান দ্রব্য বা এজেন্ট প্রয়োগ করা হয়। এই ভাসমান দ্রব্য

সুনিি্দিষ্ভাবে কণা আবরণ (coat or film) উеপন্ন করে। তারপর মিশ্রণট্তে যাত্রিকভাবে আলোড়িত (agitated) করে বুদবুদ ফেনা (frothing) উৎপন্ন কর্া হয় যা আবরিত পটাশিয়াম ক্রোরাইড কণার সাথে যুক্ত হয়ে উপরে ভেসে উঠে। এই ৫েনা সং্গু করে পটাশিয়াম ক্রোরাইড পৃথক করা হয়। মিশ্রণ কেবন সোডিয়াম ক্পোরাইড অবশিষ থাবে। প্র্রিয়া সং?্মপ

\downarrow
बবণ उ द्वाইन
বर्ब जপসার
 পানিত পটালিয়াম ক্পোরাইড ও সোডিয়াম ক্রোরাইডের দ্রবনীয়তার পার্থক্য। পানির তাপ সামাन্য বাড়ালুই পটাশিয়াম ক্লেরাইডের দ্রবনীয়ত বেড়ে যায়। কিন্তু সোভিয়াম ক্লোরাইডের দ্রবণীয়তা তেমন হারে বৃদ্ধি পায় না। পটাশিয়াম ক্রোরাইড ও সোডিয়াম ক্লৈারাইড সম্পৃক্ত ঠাজা ব্রাইন দ্রবণ 00° সেঃ তাপে উক্তাপ কর্রে তা গুঁড়া করা আকরিকের
 অধ্কেপিত (precipitated) হয় এবং স্যেডিয়াম ক্রোরাইড দ্রবণে অবশিষ্ট থেকে যায়।

পটাশিয়াম সালর্সট

লেংবিনাই্ট আকরিক থেকে দ্রীীত্বন পদ্ধতি এবং পটাশিয়াম ক্লোরাইডের সাথে বিক্রিয়া ঘটিয়ে এই সার উৎপাদন করা হয়-

$$
\mathrm{K}_{2} \mathrm{SO}_{4} 2 \mathrm{Mg} \mathrm{SO} 4+4 \mathrm{KCl}---\rightarrow 3 \mathrm{~K}_{2} \mathrm{SO}_{4}+2 \mathrm{MgCl}_{2}
$$

কৃষি জমিতে ১৬০ লেকে ১৮0 কেজি পটাশিয়াম/ হেৃ্টের ফ্সল উৎপাদনের জন্য ভাল। উর্বর কৃষি পলি জমির পটাশিয়াম
 ২২,0000 ゝ00 =২২০ কেজি/হেৃ্ট্র

१। ফিট ৫ চিলেট সার

আধুনিক সার প্রক্রিহ্যাক্রণ ধারণাসমূহ্রে মধ্যে চিলেট ও द্বিট সার অন্যত। কৃষি জমিতে চিলিটকৃত ও ফ্বিট সার প্রয়োগ করে বিশেষ কতকগুলো সুঝিধা অর্জন করা যায়। সারা বিশ্ব অনুসারের ক্কেতে চিলেট ও ফ্টিট সার ব্যাপকভাবে জনপ্রিয় হয়ে চলেছে।

চিটেটকর্রণ প্রক্রিয়া

চিলেটকরণ একটি ভৌত রাসায়নিক প্রক্রিয়া। ধাতব আয়ন্র সাথে ইলেকট্দন সংযোগের মাধ্যমে একাধিক আয়ন্নে একক বৌথ উৎপাদন্নের প্রক্রিয়াকে চিলেটক্রণ বলে। বহ্হহোজী $\mathrm{Fe}^{+++}, \mathrm{Ca}^{++}, \mathrm{Mn}^{++}$ইত্যাদি দ্ঘারা চিলেট করা যায়।

চিলেট সার

Chelate শব্দটট গ্রিক ভাযা থেকে নেওয়া হয়েছে। যার অর্থ ‘নখ’ বা ‘ক্ল’ (claw) জৈব রাসায়নি চিলেট বলতে একটি চক্রাকৃতি (ring structure) বোঝায়। দুই বা তার বেশি ইলেকট্টন প্রদানকারী যৌগসমূহের (electron donar group) কোনো ধাতব আয়ন যুক্ত হয়ে একটি মৌল চক্রাকৃতি উৎপন্ন হলে তাকে চিলেট বলে। উদাহরণস্বরূপ বলা যায়, লোহা ধাতুন চারপাশে ৬টি অক্সিজেন ও এরকম অষ্টতলক পরমাণু বিন্যাস রয়েছে। লোহা ব্যতীত কপার, জিए্ক ও ম্যাগানিজ দ্বারা সচরাচর চিলেট উৎপন্ন করা যায়। চিলেট উৎপাদনের সহজতা ও স্ছায়িত্ব ধাত্ব আয়নের প্রকৃতির উপর নির্ভর করে। লোহা চিলেট সর্বাধিক স্থায়ী। ডাই-সোডিয়াম EDTAলোহা লবণের এ ধরনের অষ্টতলক পরমাণু বিন্যাস রয়েছে।

ফিটট সারের ভৌত বৈশিষ্ট্য - সুবিধা

১. ফ্সিট সার দ্রব্য নাড়াচাড়া করা সুবিধাজনক;
২. মিশ্র সার হিসেবে ব্যবহার করা যায় এবং উৎপাদনের যে কোন পর্যায়ে তা করা যায়;
৩. বিযোজন হার ধীর;
8. এতে গৌণ উপাদানের বিষাক্তুত (বেমন- বোরন) সৃষ্টির আশংকা কমে যায়।

বর্তমানে কত্কগুলো সম্ভাবনাময় ফিট সার্রে মধ্যে উম্লেখযোগ্য হচ্ছে জিষ্ক, ম্যাঙ্গানিজ, লোহা ও বোরন ফ্রিট সার। জিষ্ক ফ্রিট সার সূক্ম্ম গুঁড়াসম্পন্ন বর্ণ বাদামি ধাতব লবণ, অবশ্য এককভাবে কেবল জিষ্ক সম্পন্ন ফ্সিট সার এখানো বাজারে পাওয়া यায় না। জিভ্ক ফ্টিট সারের প্রয়োগ হয় সাধারণত ১০ থেকে ১২ কেজি/হে: বা গাছ প্রতি ১৮ থেকে ২২ গ্রাম (বৃক্ষ)। ফল বৃক্ষে জিফ্ক ফ্রিট প্রয়োগ করলে তা পানিতে মিশিয়ে নিতে হয়। মাটিতে প্রয়োগ করলে তা মাটির সাথে ভালভাবে মিশিয়ে নিতে হয়। জিজ্ক ফ্রিটে পানি দ্রবণীয়তা কম, তবে দূর্বল এসিডে দ্রবীভূত হয়। জিষ্ক ফ্রিট ৭ থেকে ১০ ভাগ জিएক (Zn) থাকে। অन্যান্য উপাদান যথা বোরন, কপার, লোহা, ম্যাঙ্গানিজ ও মলিবডেনাম কিছু কিছু পরিমাণে থাকতে পারে।

সারণি ১৯ : গৌণ উপাদান সারের বিবরণ (বাণিজ্যিক)

ক. লোহা		খ. দস্তা বা জিङক	
সারের নাম	পরিমাণ (\%)	সারের নাম	পরিমাণ (\%)
ফেরাস সালফেট ফেরিক সালফেট লৌহ কিলেট	Fe ১৫ থেকে ২০ Fe ১৫ থেকে ১৭ Fe 凶 থেকে ১২	জিষ্ক সালফেট জিষ্ক অজ্সাইড জিষ্ক চিলেট জিষ্ক কার্বনেট	Zn ২৮ থেকে ৩৬ Zn ৫b থেকে ৭৮Zn 8 থেকে ৬ Zn 8৯ থেকে৫৬

পরিবেশ বিজ্ঞান ：সার ব্যবহার নির্দেশনা

গ．বোরন		
সারের নাম	পরিমাণ（\％）	亦保 नाম
বোরঙ্স（সোগাগা） সোডিয়াম পেন্ট বোরেট সলোবর বোরন ফিট বরিক এসিড	B ১০ থেকে ১s B ১৫ থেকে ১b B 39 থেকে ২০ B ১০ থেকে ১৭ B ১০ থেকে ১৭	সারের নাম পরিমাণ（\％） কপার সালফেট Cu ১৫ থেকে ২০ কিউপ্রিক অब্সাইড Cu ৬০ থেকে ৭৫ কিউপ্রাস অশ্রাইড Cu ৮০ থেকে ৯০ কপার কিলেট Cu ১০ থেকে ১৩ কপার অজালেট Cu ২৬ থেকে ৩২
ङ．ম্যাঙ্গানিজ সারের		চ．মলিবডড়নাম
		সারের নাম প্রিমাণ（\％）
		এমোনিয়াম মলিবডেট Mo ৫৪ মলিবডেনাম ট্বায়েকাইড Mo ৬৬ সোডিয়াম মলিবডেট Mo ৩৯ মলিবডেনাম ফ্মিটস M০ ৩০

সারণি ২০：রাসায়নিক সারের ভৌত গুণাবলী

সার	বর্ণ	দানার আকার	দানার আকৃতি	গন্ধ
এমোঃ সালফেট		0.8 মমম	গোলাকার	ঝাঁねলো
টি এস পি	ধৃসর	০．৬ থেকে ৯ মিমি	ग्यটিক，अनিয়ত	ঝাঁঝালো
হাইপার ফসফেট		১．৫ থেকে ২০ মিমি	ডিম্বাকার	কম
	বূসর	भूড	প্রায় গোলাকার	কম
এম পি	ধৃসর	অনিয়মত দানাদার অনিয়ত দানাদার	গোলাকার	কম
	লালচে		স্ফ্যটিকাকার	ক
জিপসাম	ধৃসর	চুর্ণ দানাহীন		
জিভ্ক	ধৃসর	০．৫ থেকে O．b মিমি	आনিয়ত গোলাকার	গন্ধহীন
অক্বিক্লোরাইড		－৫ থেকে ০．b মিমি	গোলাকার	গন্ধरীন
জিভ্ক সালফেট	সাদা	－．৫ থেকে ১．0 মিমি	দানাদার	গন্ৰלীন

জিঙ্ক অক্সিসালফফট

একটি ক্ষারীয় জিভ্ক সার। অম্লমান ৭．৪। জিষ্ক অব্সাইড এবং জিভ্ক সালফেট সহ্যোগে উৎপন্ন। পল্লব প্রয়াগের জন্য ঊপয়াগী। কোনো কোন্না ছ্র্রাকঘটিত রোগ দমনেও এই দ্রব্য কার্যকর হয়।

पुणीय जधाय

সার ব্যাবহারের নীতিমালা

১। রাসায়নিক সার্রের ভৌত প্রক্তি ও গ্রেড

জমিতে সার প্রয়োগের সহজত, হাত নাড়াচাড়ার সুবিধা-অসুবিধা, স্পক্ষণ গুণ ও পরিবহণ্ণর জন্য রাসায়নিক সার দ্রব্যের ভ্তেত গুণাবলী খুবই গুহুপ্ণপূর্ণ। ভেতত গুণাাবলীর মধ্যে প্রধাन হচ্ছ গ্রাহিত ও অन্যাन্য তরল দ্রব্যে দ্রবণীয়ত।

পরিবহণ ও স্ত্রকণ গুণ ছড়াও সার দ্রব্যের দানার আকার মাঢিতে এণেলোর কার্যকারিতও প্রভাবিত করে। দানার आকার যভে ছোট হয়, এর কার্यকারিত সাধারণত ততো বেশি এবং দ্রত হয়। ভেতত গুণাবলী হিসেবে একক দানার বর্ণ, সমষ্টিগত বর্ণ ও সার সনাক্তকরণর প্রাथমিক বাशিক গুণ হিসেবে কাজ করে।

বাল্লাদেলে বর্তমানে ব্যবহৃত কতগুল্লা রাসায়নিক সারের 心েত જুণাবলী ১৯ নং সারণিত্ উল্লেখ করা হয়েছে। উল্পিথিত সারের মধ্যে ইউরিয়ার পানি গ্রাহিত बেশি। একক দানার বর্ণ সমళ্টির বর্ণ্রে চেয়ে হান্কা। ইউরিয়ার হস্তুনুভূতি পিচ্ছিল। অন্যাन্য সারের হস্তনুতুতি মোটামুটি শুকননা। জিপসাম সারের হস্তানুভূতি রেশমের অনুরপ। প্রায় সব সারই পানিতত দ্রবণীয়, এদ্রু বিক্কিয়া প্রধানত প্রশম। এমোনিয়াম সানফফটটর বিক্রিয়া अझ्लोग़।

কোন সার কোন সরের সাথে মিশানো যাবে বা প্রয়োগের কতঋণ আগে মিশানো যাবে তাকে সারের মিশ্রণর্যো্যত বনে। সারের মিশ্ণলোগ্যত একটি গুরুত্নপৃর্ণ তৌত গুন। बোনা সাররর পানি গ্রাহিত বা আর্দ্রত बেশি থাকলে ত। অन্যান্য সারের সাথে মিশিক় অধিক্ষণ রাখা যায় না।

তেজা ক্ষরীয় বা অন্ঠীয় সার হাতে নাড়াচাড়া করা অসুবিধাজনক। এতে হাতের চামড়া
 ইউরিয়া)। এসব সার গুদাম ঘরের ম্মো, দেয়াল ও ছাদের জন্য ক্কতিকর হতে পারে।

তরলল সার

কৃষি জমিতে তরল সারের ব্যצशার কোনো নতুন পদ্ধতি নয়। বিষ্ঞাनী স্যার शাম্ফে ডেভি

 এাথনোর সবজি বাগানে খালের মা্্যম প্য়ঃ বা সিউয়েজ প্রয়োগ করা হতো। তরে

আধুনিককালে বিগত ২৫ বছর শেকে তরল সারের ব্যবহার সারা বিশ্বে প্রতি বeসর ৬\% থেকে ১০\% হারে হিসেবে বৃদ্ধি পাচ্ছ।

সার গ্রেড

বালিজ্যিক সার দ্রব্যে একাধিক মুখ্য পুঞ্টি উপাদান যেমন-নাইট্রাজেন, ফসষ্রাস ও পটশিয়াম থাকলে তা একটি সং্খ্যাতত্ত্রিক প্ধ্রি দ্বারা তা প্রকাশ করা হয়। এই সং্খ্যা
 মধ্যে ऊ্রমন্ন্যে প্রথयটি নাইট্রাজন, দ্দিতীয়টি ফসফরাস এবং ত়তীয়ি পটটশিয়ামের পরিমাণ উল্gেখ করে। মিশ্প সারের জন্য সং্খ্যা পদ্ধতি উল্লেথিত নিচিত বিল্লুষণ (Guaranteed analysis) उথ্যকে সার গ্রেড বলে।

সার গ্রেডের উদাহরণ : তিনটি সং্খ্যার দ্বারা গ্রেড উল্লেে করা হয়। যেমন ১০-১০-১০, ২০-১০-b, ১০-১৫-১০ ইত্যাদি। এসব সংখ্যার প্রথমটি নাইট্রোজেন, দ্বিতীয়টি ফসফরাস (ফসফেট) এবং তৃতীয়টি পটাশিয়াম (পটাশ)। ২০-২০-১০ সার গ্রেড বলতে বোঝায় এতে মোট নাইট্রোজেনের পরিমাণ ২০ ভাগ, প্রাপনীয় ফসফেট ($\mathrm{P}_{2} \mathrm{O}_{5}$) ২০\% ভাগ, এবং পানির দ্রবণীয় পটাশ $\left(\mathrm{K}_{2} \mathrm{O}\right)$ ভাগ ১০ ভাগ। বাকি পরিমাণ ২০ ভাগ প্রাপ্য ফসফেট $\left(\mathrm{P}_{2} \mathrm{O}_{5}\right)$ २०\% ভাগ এবং পানির দ্রবণ পটাশ $\left(\mathrm{K}_{2} \mathrm{O}\right)$ ১০ ভাগ। বাকি ৫০ ভাগ রয়েছে অন্যান্য দ্রব্য যেমন-অঞ্সিজেন, ক্যালসিয়াম, ক্পোরিন, ইত্যাদি।

সারণি ২০ : যৌগিক সারের গ্রেড

সারের নাম	$\mathrm{N}-\mathrm{P}_{2} \mathrm{O} 5-\mathrm{K}_{2} \mathrm{O}$	N-P-K
ডাই-এমোনিয়াম ফসফেট	১t-8u-0	১৮-২০-0
মনো-এমোনিয়াম ফসফেট	JJ-8b-0	১১-২১-0
পটাশিয়াম নাইট্রেট	১৩-0-88	১৩-0-৩৭
পটাশিয়াম মেটাফস্সফেট	- - - - 80	--২৭-৩৩
পটাশিয়াম ফসফেট নাইট্রেট	Q-৩৫-২8	9-3 - 20

সার অনুপাত ও ফর্মুলেশন

কোনো সার দ্রব্যের দুটি বা তিনটি পুট্টি উপাদানের পারস্পরিক পরিমাণকে সার অনুপাত দ্বারা উল্লেখ করা হলে তাকে সার অনুপাত বলে। কোনো সার দ্রব্যের সার গ্রেড ১০-২০২০ হলে সার অনুপাত হয় ১০২ঃ২।

সার ফ্ম্মুলেশন

কোনো নির্দিষ্ট সার গ্রেড বা সার অনুপাত তৈরি করতত হলে কোন সার দ্রব্য কি পরিমাণ মিশাতে হয় তা নির্ধারণ করা ও সার উৎপাদনকে সার ফর্মুলেশন বলে। আধুনিককালে

কম্পিউটার যন্ত্রের সাহায্যেও এ ধরনের হিসাব কাজ সমাধা করা হয়। সার গ্রেড তৈরির প্রয়োজনীয় উপকরণ বা অংশ দ্রব্য দ্বারা রাসায়নিক বিক্রিয়ার মধ্যমে বৌগিক সার তৈরি করতে হলে বেশ জটিল ধরনের হিসাব সম্পাদন করতে হয়।

বহু-উপাদানিক সার

বর্তমান বিষ্ঞান উন্নত কৃষি উৎপাদন $ও$ মৃত্তিকা ব্যবস্থাপনায় সরল সারের চেয়ে বল্উপাদানিক সার অধিক প্রতিশ্রুতিশীল। উস্ডিদ পুষ্টি উপাদানের মধ্যে কোনো দ্রব্যে একাধিক মুখ্য উপাদান (NPK) থাকলে তাকে বহু-উপাদানিক সার বলে। অবশ্য কোনো কোনো সময় ক্যালসিয়াম, ম্যাগনেশিয়াম ও সালফারকেও বহ্-উপাদানিক সার দ্রব্যকেও অন্তর্ভুক্ত করা যেতে পারে।
বহ্-উপাদানিক সার উৎপাদনের মৃল উপকরণ হচ্ছে-
১. রক ফসযেট-ফসফরাস ও ক্যালসিয়াম
২. সালফিউরিক এসিড-সালফার
৩. এমোনিয়া-নাইট্রোজেন
8. পটাশিয়াম ক্লোরাইড-পটাশিয়াম
৫. সন্ট পিটার ও চিলিয়ান নাইট্রেট-নাইট্রাজেন।

উদাহরণ

NP. সার : এমোনিয়াম ফসফেট, নাইট্রো-ফসফেট বা এমোনিয়ামযুক্ত সুপার ফসফেট
NPK সার ঃ NP সার + পটাশিয়াম ক্লোরাইড।

বए-উপাদানিক সার উৎপাদনের বিভিন্ন পদ্ধতি বা ধাপ

ক) এসিড যুক্তকরণ (Acidulation) : রক ফসফেট +এসিড।
খ) এমোনিয়ামযুক্করণ (Ammoniation) : ১০ কেজি সুপার ফসফেট +২৭-৩.২ কেজি এমোনিয়াম।
১০টি এস. পি. + ১.৮, ২৩ কেজি এমোনিয়াম
গ) দানা উৎপাদন (Granulation) : 8 থেকে ৮- মেশ, ৪.৩ থেকে ২.৩ মিমি.।

মিশ্র সার (আর্দ্রতা ৫\%)

মিশ্র বা জটিল সারের ৫টি প্রধান উপকর়ণ যথা-
১. উপাদান বাহক (Nutrient carrier) যथা- N, P, K ইত্যাদির বাহক;
২. কন্ডিশনার (Conditioners) আবরণী দ্রব্য (Coating agent) ;

আর্দ্রতা শোষণ যেমন-ভারমিকুলুাইট দলা প্রতিরোধী (Anticaking) দ্রব্য।
৩. অম্লত্ব প্রশমক (Acidity neutralius);
8. পূর্ণ্র্রব্য (Fillers);
৫. অন্যান্য अতিরিক্ত দ্রব্য (আপদনাশক)।
১. পুষ্টি উপাদান সরবরাহকারক : পুষ্টি উপাদান সরবরাহ হিসেবে সরল একক সার
 উপাদানের উপস্থিতির (\%) উপর নির্ভর করে।
২. কন্ডিশনার (Conditioners) : মিশ্র দ্রব্যের দলা বেবে যাওয়া বা প্রতিকুল ভৌত জবস্থা সৃষ্টি হওয়া এড়ানোর জন্য কন্ডিশনার দ্রব্য ব্যবহার করা হয়। जামাক কাণ্ড গুঁড়া, চীনাবাদাম খোসার গুঁড়া, ধানের তুষ, পিট, ইত্যাদি কন্ডিশনার হিসেবে ব্যবহার করা যায়। প্রতি টন মিশ্রণে ৫০ কেজি পরিমাণ পর্যন্ত কन্ডিশনার দ্রব্য ব্যবशার করা যায়।
๑. প্রশমনকারী (Neutralisers) : উপকরণ সার অম্লধর্মী হলে এর বিক্রিয়া প্রশ্নের জন্য ক্ষারীয় দ্রব্য (ঘেমন- ডলোমাইট, চুনাপাথর) ব্যবशার করা হয়।
8. পূর্ণ দ্রব্য (Filler materials): এর অপর ওজন পরিপূরক দ্রব্য। নির্দিষ্ট পরিমাণ মাত্রা পরিপূরকের জনা এই দ্রব্য ব্যবহার করা হয়। প্রতি টন মিশ্র সারে পূর্ণ দ্রব্যের পরিমাণ ৫০ কেজির বেশি হওয়া উচিৎ নয়। বালি ও কাঠের গুঁफ़া পূর্ণ দ্রব্য হিসেবে ব্যবহার করা যায়।

২। মিশ্র সার

 একাধিক উপকরণ দ্রব্যের (components) কারিগরি মিশ্রণ বা রাসয়়িক সংমিশ্রণের মাধ্যমে যে দ্রব্য উৎপাদন করা ছয় তাকে মিশ্র (mixed) সার বলা হয়।

বর্তমানকালে সারা শিশ্বে মিশ্র সার উৎপাদন, বিক্রয় ও ব্যবহার বেশ ব্যাপকতা লাভ করजছ। উন্নত শিল্প্প কারখানায় রাসায়নিক পদ্ধতিতে মাটি ও ফসলের প্রয়োজনীয়তার নিরিখে সুন্নির্দিষ্ভভাবে ফলন বৃদ্ধির লক্ষ্যে সুষম মিশ্র সার উৎপাদন সম্প্রসারিত হচ্ছে। মিশ্র সারের ব্যবহার বেশ পুরাতন। अবশ্য তখন সারের ব্যবহার তजোটা জনপ্রিয় ছিল না।

মিশ্র সারের ব্যবহার দিন্নে দিন্ন ব্যাপক হলেও এর কৃষিতাত্বিক কার্यকারিতায় বিভিন্ন দৃষ্টিরোণ থেকক সুবিধ্যা এবং অসুবিধা রয়েছে। নিচে এ ধরনের কয়েকটি প্রধান সুবিধা ও অসুবিধা আলোচনা করা হলো।

মিশ্র সারের সুবিধা

আধুনিক ও বৈশ্ঞানিক কৃষি উৎপাদন পদ্ধতিতে মিশ্র সার বেশ গুরুত্বপূর্ণ স্থান দখল করেছে। মিশ্র সারের কয়েকটি প্রধান সুবিধার মধ্যে রয়েছে-
3. সব কয়টি প্রধান পুষ্টি উপাদান একই র্রব্যের মাধ্যমে এবং একই সময়ে প্রয়োগ করা যায়।
২. সার প্রয়োগজনিত সময়, ব্যয় ও শ্রমিক কম প্রয়াজন হয়।
৩. সার মিশ্রণ তৈরি করার সময় প্রতিটি উপকরণ বিক্রিয়া ও মিশ্শণের পর সামগ্রিক বিক্রিয়ার প্রতি খেয়াল রেখে প্রধানত প্রশম মিশ্রণ তৈরি করা হয় বলে সারের অম্লমনজজনিত অবশিষ্ট প্রভাব কমে. যায়।
8. মিশ্র সারে নাইট্টোজেন, ফসফরাস ও পটাশিয়ামসহ মাধ্য়মিক বা গৌণ উপাদান সারও যুক্ত করা যায়।
৫. সাধারণত প্রতিটি ফসলের জন্য বা সমধরননর একাধিক ফসলের প্রয়োজনীয়তা বিবেচনা করে সার মিশ্রণ তৈরি ও বিক্রি করা ঘায়। তাই সার পছন্দের ব্যাপারে কৃষকের প্রযুক্তি জ্ঞান কম থাকলেও তেমন অসুবিধা হয় না।
৬. মিশ্র সারের মাধ্যমে সুষম সার ব্যবशার করতে পরোক্যাবে অনেকটা বাধ্য করা হয়। সরল সার প্রয়োগ দ্বারা অনেক সময় সুষম সার প্রয়োগ নিশ্চিত করা যায় ना।

মিশ্র সারের অসুবিধা

অনেক সুবিধা থাকলেও মিশ্ন সারের বেশ কয়েকটি অসুবিধাও রয়েছে। মিশ্রণ প্রস্তুতকরণ, প্রয়োগ ও সংরক্ষণের স্বার্থে এসব অসুবিধা রয়েছে। কয়েকটি প্রধান প্রধান অসুবিধা নিম্নুর্ :
2. ফসলের নির্দিষ্ট একক উপাদানের ঘাটতি বা ফসলের বিশেষ প্রয়োজন মেটানো যায় না, সরল সার দ্বারা অত্যন্ত সুষ্ঠুভাবে এ ধরনের পুষ্টি প্রয়োজন মেটানো যায়।
২. যে কোনো একটি উপাদানের প্রয়োজনীয়তা মিশ্র সার দ্বারা পরিপুরণ করতে হলে উপস্থিত অন্যান্য উপাদানের অপচয় হয়।
৩. মিশ্র সার উৎপাদন করতে অত্যন্ত বিস্তারিত ও বাস্তব প্রयুক্তি ষ্ঞান প্রয়োজন।
8. মিশ্র সার প্রস্তুতের জন্য অতিরিক্ত ব্যয় হয়।
৫. মিশ্র সারের মূল্য কিছুটা বেশি।
৬. মৃত্তিকা গুণাবनী অনুসারে একই প্রয়োগ পদ্ধতি একাধিক উপাদানের জন্য সমান কার্যকর হয় না। যেমন- কোনো মাটিতে মিশ্র সার মাটির গভীরে প্রয়োগ ফসফেটের কার্যকারিতা বাড়াতে পারে, কিন্তু এতে নাইট্রেজেনের অপচয় বেড়ে যেতে পারে।
१. ফসলের বৃদ্ধি পর্যায় অনুসারে উদ্রিদের পুষ্টি উপাদান প্রয়োজনীয়তায় সময়ের পার্থক্য রয়েছে। মিশ্র সারের মাধ্যম একই সময়ে সার প্রয়োগ করলে সবগুলো উপাদান সমানভাবে কার্যকর ছ্য় না।

মিশ্র সারের সুবিধা ও অসুবিধা আলোচনা করলে দেখা যায় যে, মৃত্তিকা ও ফসল বিশেশে সার প্রয়োগের জন্য মিশ্র ও সরল উভয়ের সুসমন্বয়ই সর্বাধিক ফলন প্রদান করততে সক্ষম।

মিশ্র সার প্রস্তুত্র মৃলনীতি
মিশ্র সার উৎপাদন্লর সময় নিস্নল⿵িখিত মৃनনীতিসমূছের প্রতিপালন অত্যাবশাক।
১. এমোনিয়ামসম্পন্ন সব সার সরাসরি ক্ষারীয় সার দ্রব্যের সাথে (রক ফসফেট, ছুনাপাথর বেসিক স্ন্যাগ, ক্যানসিয়াম সায়ানেমাইড) মিশানো উচিৎ নয়। এতে এমোনিয়া উৎপাদিত হয়ে নাইট্রোজেনে অপচয় হওয়ার আশংকা বেড়ে যায়।
২ পানি দ্রবণীয় ফসফেট (সুপার ফসফেট, ট্রিপল সুপার ফসফেট ও এমোনিয়াম ফসফেট) মুক্ত চুন (free line) সম্পন্ন দ্রব্যের সাথে (যেমন- চুনাপাথর, ক্যালসিয়াম সায়ানেমাইড মেশানো উচিৎ নয়। এতে আদ্রবণীয় ক্যালসিয়াম ফসফেট উৎপন্ন হতে পারে।
৩. সার মিশ্রণে পানিগ্রাহী দ্রব্য ব্যবহার করা ঠিক নয়। এতে মিশ্রণ দলা বেধে গিয়ে অসুবিধা সৃষ্টি হয়।
8. অহ্লীয় সার দ্রব্যের ধারকে (carrier) কিছু পরিমাণ অম্ল প্রশমনকারী দ্রব্য ব্যবহার করা ভাল। এতে মিশ্রণ ধারক পাত্র কতিগ্রত্ত বা বিনষ্ট হয় না।

মিশ্র সার উৎপাদন প্রক্রিয়া

যে কোনো মিশ্র সার উৎপাদনের পর্যায়ক্রমিক ধাপগুলো নিচে উল্লেখ করা হলো।
১. হিসাব ఆ ఆজन নেওয়া : সঠিক মিশিণ তৈরির জন্য উপকরণ সারসমূহ্রে পরিমাণ সৃম্দ্যতার নির্ণয় ও ওজন গ্রহণ করা দরকার।
২. চালুनি ও আকারক্রমন (Sirving and sizing) : স্ক্রক্পণগারে উপকরণ সার দ্রব্য কোনো কারণ দলা বেধে গেলে তা প্রাথমিকতাবে গুঁড়া করে চেলে নিতে एয়। চেলে নেওয়ার সময় जা দানার আকার অনুসারে বিনয়ुও করা যায়। সবগুল্লা উপকরণ সার দ্রব্যের দানার আকার এ রকম না হলে প্রোর্রিগীশন হওয়ার আশক্শ থাকে।
৩. মশােন্ন (Mixing) : মিশ্রণের জন্য সাধারণত ঘুর্ণন ড্রাম বা খাড়া সিলিন্ডার ব্যবহর করা যায়।
8. প্যাকিং (Packing) : প্রস্তুতক্ত মিশিণ উপযুক্ত পাত্র প্যাকিং করতে হয়।

মিশ্র সার প্রস্তুত পদ্ধতি

যে কোনো মিশ্র সার তৈরি করতে হলে প্রথমেই কাষ্কিত ক ক্মুলা প্রণয়ন করতে হয়। এই ফর্ম্লুার ভিক্তিতে প্রয়োজনীয় উপকরণ বা অংশ দ্ব্য নির্ধারণ এবং পরিমাণ নির্ণয় কনতে
 অশ্শ দ্রব্যের পরিমা|ণ= উ(মিমণণে উজ্ভিদ পুষ্টি উপাদানের পরিমাণ X মোট মিশ্ণণর उজন,সর্ল সারে পুষ্টি উপাদান পরিমাণের)

এক্ষেতে, ME= মিশ্রণের উপাদান
TM= মিশ্রণের পরিমাণ
IE= সরুল সারে উপাদানের শতকরা পরিমাণ
অथবा $\mathrm{AI}=\frac{\mathrm{ME}(\%) \times \mathrm{TM}}{\mathrm{IE}(\%)}$

মিশ্র সার্রে ্রবেের পরিবর্তন

কৃত্রিম সংশ্লেষণ পদ্ধতিতে মিশ সার উৎপাদন্রের সময় ব্যবহৃত উপকর্ণণ দ্ব্য বা সরল সার দ্রব্যের ভোত রাসায়নিক পরিবর্তন সাধিত হয়। এসব রাসায়নিক পরিবর্তনের গতিধারা নির্ধারণণ সময় ফসললর কৃষিতত্বিক প্রয়োজনীয়তত ও মৃত্তিকা বৈশিষ্যা বিশেষভাবে বিবেচনা করতে হয়। কতগুলো প্রধান রপান্তর সম্পর্কে নিচ আলোচনা করা হল্ল।।

ड্যৈত পরিিবর্তন

د. পানিগ্রাহিতা(Hiygroscopicity)
 কোনো দ্রব্যের পানিগ্গাহিত বেশি হলে তা বায়ুমগলীর आর্দ্রত পরিশোষণ করে গলে যেতে পারে। ইউরিয়া সারের পানিগ্রাহিত অনেক বেশি। ক্যালসিয়াম নাইট্টেট, এমোনিয়াম
 प্রব্য মিশ সারে ব্যবशার করলে তা সংকক্ষণ করা খুবই অসুবিধা হয়ে যায়।

२. দला वाँधा

 মিশ সার উৎপাদন্ন অসুবিধাঁ সৃষ্টি করে। এই आর্দ্রত অन্যান্য উপাদানেরও দ্রহণ ঘটাতে পারে। দলা বাঁधা সার প্রয়োগ করতে অসুবিধা হয়। কোো কোো ক্ষেত্রে অন্য উপাদানের গুণাবनীও (পানি বাশ্পায়নের পর) বিনষ্ট করতে পারে। जেতত অবস্থা উন্নয়নকরী বা কन্ডিশনার দ্রব্য ব্যবহার করে এরক্ম অসুবিধা দूর করা যায়। কন্ডিশনারের দ্রব্যের মধ্যে উল্লেখযোগ্য एচ্ছ চীনা-বাদাম্রে খোসার (G.nut husk) চ্ণ্ণ ও কর্দম। দানাদার আকারের মিশাণ তৈরি উৎপাদন করেও (মোটৌুটি স্शুয়িত্নীীল সমান আকারের দানা) এই সমস্যা সমাধান করা যায়।

৩.সেগ্রিগগশন

বিভিন্ন আকরের দানাবিশিট ও বিতিন্ন ঘনप্নবিশিট একক উপকারী দ্রব্য মিশিত্যে মিশ্র সার উৎপাদন কর়লে এগুলো সহজে মিশতু চায় না। বড় বা ভারি দানাগুল্া ত্লানি পড়़ যেতে থাকে। মিশ্ণণণর এরকম সেগ্রিগেশন এড়ানোর জন্য মিশ্ণণ সমাক্বার দানাবিশিট করে উৎপন্ন করতত হয়।

রাসায়নিক পরিবর্তন

মিশ্ সার উৎপাদন্নর সময় তরলল সার দ্র্য বা উপকরণণর মষ্যে নানা রক্ম রাসায়নিক

দ্-ি-যোজন, প্রশমন, প্রতিস্থাপন, দ্রবীভবন आয়নীভবন ইত্যাদি।

৩। সার প্রর্যো প্রদ্ধতি

সারের কর্যকারিত বৃদ্ধি করার মৃত্তিকা ব্বস্ছ|পনা ও কৃযিতত্যিক বিষয়ের মষ্ধে সার প্র<্যোগ পদ্ধতি গুরুন্ধ্ণপণ৷। সারের প্রকার, পরিমাণ, প্রয়োগ সময়, মৃত্তি小 গুণাবनী ও

ফসলের বৈশিষ্ট, উপস্থিত আবशওয়া এবং প্রয়োগ বয় বিবেচনা করে সার প্রয়োগের জন্যা উপयুক্ত পদতি নির্ধারণ করতত হয়।

অতএব বলা যায়, ফসলের বৃদ্ধি উন্নয়ন, পরিপুষ্টি ও অধিকতর পরিমাণে ফলন প্রাপ্তির জন্য সকল সার সঠিক পদ্ধতিতে প্রয়োগ কবতে হয়। সঠিক পদ্ধতিতে সার প্রয়োগ না করার প্রধান অসুবিधা নিহ্নে উধ্ল্রে করা হলো।
১. সার থেবে পু有 উপাদানের অপচ্যের আশংকা বেড়ে যায়।

ই. ফসল উভ্ভিদ প্রয়োজন মোতাবেক পুটি উপাদান পরিশাষণ করতে সক্ষম হয় না।
৩. কোন কোন সময় স্থনীীয়াবে প্রয়্যোগকৃত সার উপাদানের বিষাক্ততা সৃষ্টি করেে।
8. সার প্রয়োগজনিত অর্থ ব্য় ও সময় बেড়ে যায়।
๔. সামগ্রিকভাবে ফসলেরে ফলन ও মান কহে যায়।

সার্রের প্রয়োগ পদ্ধতি নির্ধারণের উল্দেশ্য, উপকার্রিত ও বৈশিষ্ট্য

সঠিক প্ধতিতে প্র্যোগের মাধ্যম্ সারের কার্यকারিত বৃদ্ধি এবং সার প্রয়োগ থেকে বেশি অर्থরৈতিক সফলতা লাভ সষ্ব।। সার প্রয়োগের সঠিক পদ্ধতি নির্ধারণণর মূলনীতি বা উল্দশ্য নিচে উষ্লেথ করা হলো।
১. ফস্সরে সহজভাবে প্রয়োগকৃত পুটি উপাদান পরিশোষণ করার সুম্যো গেওয়া
২ সার দ্রব্য থেকে ফ্সল উস্ডিদ্দ যেন কোনো রকম বিষাক্ততা সৃষ্টি না হয়।
-. প্রয়োগকৃত সার থোকে পুষ্টি উপাদানের অপচয় কমানো।
8. সার প্রয়োগ কাজকে সহজ এবং অর্থননতিকডাবে লাजজনক করে তোলা।
৫. সার প্রয়োগ দ্বারা নতুন সমস্যা সৃষ্টি না করা।

มাটিতে আবদ্ধকরণ, বিষাক্তত সৃষ্টি, চলাচল ও অপচয় আশপকা ইত্যাদি বিষয় বিবেচনা করে সার প্রয়োগ পদ্ধতি নির্ধারণ করতে হয় ভেমন-
2. এমোনিয়া ও অতিরিক্ত পটাশিয়াম বীজের অক্ুুর্রাদ্গমে বিষাক্ত্ত সৃৃ্টি করে।
২. মাটিতে ফসফেট আয়ন তেমন চলাচল করতে পারে না অর্থাৎ যেখানে প্রয়োগ করা হয় তার আশশপাশেই এর কার্यকরিতা সীমাবদ্ধ থাকে।
৩. পানি চলাচcের সাথে সাথে নাইট্রেট আয়ন, মাটির উপর থেকে নিচ বা পার্শ্ব দিকে ঢানু জমিতে পার্শ্ণ চুয়ানীতে চলাচল করতে পারে।
8. এমোনিয়াম আয়ন কর্দম কণায় অাবদ্ধ বা সংযোজিত এবং উপশোষিত হয়ে থাক্তে পারে বলে এর চলাচল সীমিত। পটাশিয়াম আয়নও মৃত্তিকা কর্দম্ম উপশোষিত হয়ে থাকতে পারে।

সঠিক পদ্ধতিতে সার প্রয়োগের উপকার্রিতা

১. পুটি উপাদানের অপচट়़র আশংক্d কম;
২. পুষ্টি উপাদানের বিষাক্তুতা সৃষ্টি হয় না;
৩. ফসল যথাসময়ে পুষ্টি পরিশোষণ করতে পারে;
8. সার প্রয়োগের অর্থনৈতিক কার্यকারিতা বাড়ে ;
৫. অবশিষ্ট প্রভাবজনিত সুফল পাওয়া যায় ;
৬. , ফলন বৃদ্ধি পায়;
१. সার ব্যবহারজনিত ব্যয় কমে যায় ;
৮. পরিবেশ দূষণের আশংকা কমে যায় ;
৯. বীজের অヒ্কুরোদগম ভাল হয়;
১০. সময় এবং সারের পরিমাণ কম লাগে।

সার প্রয়োগের সময়, প্রকার, পরিমাণ ও পদ্ধতি নির্ধারণের নিচ্চ উষ্ধিখিত বৈশিষ্টসমমহ বিবেচনা করতে হয়, যেমন-

ক) মৃত্তিকা বৈশিষ্ট্য

১. বুনট,
২. আর্দ্রতা ও পানি-্ধারণ ক্ষমতা ;
৩. অম্নত্ব ও ক্ষারত্ব, চুন্নর উপস্থিতি;
8. উপর ভূমির গভীরত ;
৫. লবণের পরিমাণ, সোডিয়াম পরিশোষণ অনুপাত (SAR) এবং মোট বিনিময়ী ক্ষারক;
৬. পানি অনুপ্রবেশ হার।

অ) ফসল বৈশিষ্টা
১. ফসলের প্রকার ও জাত (ফলনশীলতা),
২. ফসলের বৃদ্ধি পর্যায় ও বয়স,
৩. ফসল ফল্লানোর উদ্দেশ্য (বীজ, পাতা বা শিকড়),
8. পূর্ববর্তী ফসল ও ফসन পর্यায়,
৫. ফসলের উৎপাদন সময়সীমা,
৬. ফসলের সেচ প্রয়োজনীয় ও সষ্ভাব্যতা,
৭. ফসলের মোট উৎপাদন মূল্য ও বাজারজাতকরণ সুবিধা।

গ) সার বৈশিষ্ট্য
১. সারের প্রকার,
২. প্রধান উপাদানের আকার ও মাটিতে এর চলাচল ;
৩. উপাদান বা আয়নের দ্রবণীয়তা বা সংযোজন ক্মতা;
8. সারের ভৌত আকার ও প্রকৃতি ;
৫. সারের অম্লাজ্ক ও ফারাভ্ক;
৬. সারের অবশিষ্ট প্রভাব;
१. সারের মূল্য ও পারিমাণ ;
৮. সারের প্রয়োগ ব্যয় ও প্রয়োগ সুবিধা ;
৯. সার হাতে নাড়া-চাড়া করার সুবিধা-অসুবিধা।

ঘ) অন্যান্য উপাদান

১. আগাছার আক্রমণ তীব্রতা ;
২. অন্তর্ত্তীকালীন পরিচর্যার মাত্র ;
৩. রোগ-বালাই নিয়ন্ত্রণের ব্যবস্থা
8. পানি নিয়ন্ত্রণ সম্তাব্যতা,
৫. সার ব্যবহার ক্ষমতা ;
৬. রাষ্টীয় সার নিয়ন্ত্রণ ব্যবস্থা।

সার প্রয়াগ পদ্ধততির প্রকার

কৃষি জমিতে ফসল, মৃত্তিকা ও সার বৈশিষ্ট্যের ভিত্তিতে বহ্ পদ্ধতিতে সার প্রয়োগ করা যায়। নিচে সচরাচর ব্যবशারযোগ্য পদ্ধতিগুলো সংক্ষেপে উল্লেখ করা হলো।
ক) ছিটার্না পদ্ধতি (হাত বা যস্ত্রের সাহায্য সরাসরি জমিতে সার ছিটিয়ে প্রয়োগ করা)
১. সরল ছিটটানো বা মূল (Basal) প্রয়োগ ;
২. পার্শ্ব ছিটানো;
৩. উপরিপ্রয়োগ।
v) স্থানীয় প্রত়োগ
১. ব্যান্ড পদ্ধতি ;

২ রিঙ পদ্ধতি;
৩. সারি পদ্ধতি;
8. ড্রিল পদ্ধতি;
৫. লাডল তল পদ্ধতি;
৬. মাডবল পদ্ধতি;
१. গভীর প্রয়োগ।

গ) সিঞ্চন পদ্ধতি
১. একক উপাদান প্রয়োগ;
২. সংরক্ষণ দ্রব্যসহযোগে প্রয়োগ।

ঘ) সেচ পানির সাথে প্রয়াগ
১. তরন সার প্রয়োগ ;
২. মৃত্তিকা ড্রিপ।
৩. ছিটানো, উপরি, পার্শ্ব ও স্গানীয় প্রয়োগ।

১. সার ছিটানো (Broadcast)

এই পদ্ধতিতে জৈব ও রাসায়নিক উভয় প্রকার সারই কঠিন অবস্থায় প্রয়োগ করা যায়। জমি তৈরি করার শষ পর্যায়ে গোবর ও কমপোস্টজাতীয় সার জমিতে ছিটিয়ে প্রয়োগ করা হয়। জমির উপরে হাতে ছিটানো ছাড়াও আজকাল আয়তনী সার ছিটানোর জন্য বিশেষ প্রকার যন্ত্রপাতি উদ্ভাবন করা হচ্ছে। এগুলোকে সার বিস্তারক (spreader) বলা হয়। শুক্ক গুঁড়া করা সকল জৈব সার ও দানাদার রাসায়নিক সার শক্তিচালিত যন্ত্র দ্বারা ছিটানো যায়। হারত ছিটানোর চেয়ে যন্ত্র দ্বারা ছিটাতে সময় কম লাগে। ছিটানো পদ্ধতিতে জৈব সার, ফসফরাস ও পটাশিয়াম সার প্রয়োগের পর তা আবার চাষ দিয়ে ভালভাবে উপর মাটির সাথে মিশিয়ে দিয়ে ভাল হয়। জৈব সার ছাড়াও সাধারণত মাঠ ফসলে বিশষ করে যে সব ফসনে হেক্টের প্রতি গাছের সংখ্যা বেশি যেমন- ধান, গম, সরিষা ইত্যাদির ক্ষেত্রে সমগ্র ফসফেট ও পটাশ সার এবং নাইট্রোজেন সারের অংশবিশেষ (প্রারম্ডিক অow) ছিটানো প্রয়োগ করা যায়।

চিত্র ১ : সার ছিটানো পদ্ধতি

ছিটানো পদ্ধতির বৈশিষ্ট্য

সার প্রয়োগে সুবিধা : শ্রমিক ও সময় কম নাগে
সারের প্রকার : জৈব ও রাসায়নিক মুল সার
প্রধান ফসল : প্রধানত মাঠ ফসল
প্রয়োগ সময় : জমি চাষ দেওয়ার সময় বীজ বপনের ১ থেকে ২ সপ্তাহ আগে

প্রয়োগ পদ্ধতি : হাতে বা যন্ত্র দ্বারা ছিটানো
মন্তব্য
: বাংলাদেশে অতি জনপ্রিয় পদ্ধতি।
২. উপরি প্রয়োগ (Foliar top dress)

জমিতে ফসল কিছুটা বৃদ্ধি পাওয়ার পর কঠিনাকার বা দানাদার রাসায়নিক সার উপরিপ্রয়োগ করা হয়। ফ্সল উৎপাদিত জমিতে গাছের উপর দিয়ে সার ছিটিয়ে প্রয়োগ করাকে উপরিপ্রয়োগ বলে। সার প্রয়োগের পর তা যেন গাছে লেগে না থাকে' সেজন্য সার প্রয়োগের পর জমির গাছের উপর দিয়ে রশি টেনে দিয়ে ভাল হয়। গাছ ভেজা অবস্থায় জমিতে রাসায়নিক সারের উপরিপ্রয়োগ করা ঠিক নয়, এতে গাছের পাতায় সার লেগে থাকলে পাতার বিষাক্ততাজনিত কতি হতত পারে। ফসফরাস ও পটাশিয়াম সার সাধারণ উপরিপ্রয়োগ করা হয় না। প্রধানত নাইট্রোজেনের অংশবিশেষ এই পদ্ধতিতে প্রয়োগ করা যেতে পারে। গাছের বৃদ্ধি পর্যায় ও প্রয়োজনীয়তা অনুসারে জমিতে একাধিক বার উপরিপ্রয়োগ করা যায়। উপরিপ্রয়োগ সাধারণত যম্ত্রপাতি দ্বারা না করে হাতে করা হয়। মিডো (medows) ফসল ও তৃণ ভূমিতে সার উপরি প্রয়োগ করা হয়। বছরের প্রায় সব সময় ফসলাচ্ছাদিত থাকার কারণে এসব জমিতে ফসফরাস এবং পটাশিয়াম সারও এভাবে ছিটিয়ে প্রয়াগ করা যায়। গৌণ উপাদান (micronutrient) সারসমূহ প্রধানত গাছে স্প্রে বা পাতায় প্রয়োগ করা হয়ে থাকে।

চিত্র ২: রাসায়নিক সারের উপরিপ্রয়োগ

উপরিপ্রয়োগ পদ্ধতির বৈশিষ্ট্য

সার প্রয়াগে সুবিধা : সার দ্রব্যের কার্যকারিতা বাড়ে
সারের প্রকার : প্রধানত ইউরিয়া কিস্তি
প্রধান ফসল
প্রয়োগ সময়
প্রয়োগ পদ্ধতি
মন্তব্য
: ধান, গম, পাট প্রভৃতি মাঠ ফসল
: চারা রোপণ/বীজ বপনের ২০ থেকে ৬০ দিন বয়সে
: হাতে ছিটানো
: বাংলাদেশে ব্যাপকভাবে ব্যবহৃত।

৩. পার্শ্ব প্রর্যোগ (Side dressing)

সারিতে বোনা বা রোপণ করা জমিতে দুই সারির ফাঁকে গাছছর গোড়ায় বা পার্শ্বে ছিটিয়ে প্রয়োগ করাকে পার্শ্ব প্রয়োগ বলে। ভুট্টা, আখ, চা, শাক-সবজি, বাঁধাকপি, ওলকপিসহ ১ মিটরের কাছাকাছি দূরত্বের সারিতে লাগানো ফসলে পার্শ্ব প্রয়োগ পদ্ধতি অবলমন করা হয়। প্রধানত নাইট্রোজেনখটিত সার (সমগ্র অংশ একব্বারে বা অংশ প্রয়োগ হিসেবে একাধিক বার) পার্শ্ব পদ্ধতিতে প্রয়োগ করা হয়।

াচ্র ৩ : সারের পার্শ্ব প্রয়োগ

পার্শ্রপ্রয়াগাগ পদ্ধতির ‘বশিষ্ট্য

সার প্রয়োগে সুবিধা : সার দ্রব্যের কার্যকারিতা বাড়ে
সারের প্রকার : প্রধানত ইউরিয়া ও মিউরেট অব পটাশ
প্রধান ফসन : ভूট্টা, আখ, সরগাম
প্রয়োগ সময় : বীজ বপনের ৩০ থেকে ৬০ দিন পর (ইক্সুর ক্ষেত্রে আরও বেশি)
প্রয়োগ পদ্ধতি : হাতে ছিটানো
মন্তব্য : বাংলাদেশে জনপ্রিয় হচ্ছে।
পার্শ্ব প্রয়োগকৃত সার ছিটিয়ে প্রয়োগ করা হলেও ফসল ও মাটি বিশেষে সামান্য গভীরে প্রয়োগ করা উত্তম। সারিতে বোনা পানি, তুলা ও আনারসের জমিতে সারের পার্শ্ব প্রয়োগ পদ্ধতি অবলম্মন করা হয়। চা, কফিসহ বহ বার্ষিক অন্যান্য ফসলে জৈব সার ফসফরাস ও পটাশিয়াম সার প্রয়োগে এই পদ্ধতি অবলম্মন করা হয়। আখের মুড়ি ফসল এবং আনারসের দ্বিতীয় বছরের জৈব, ফসফরাস ও পটাশিয়াম সারের পার্শ্ব প্রয়োগ করা যায়।

স্কানীয় প্রয়োগ পদ্ধতি

মাটির গভীরে উদ্ভিদ শিকড়ের বৃদ্ধিমান অংশের কাছাকাছি স্शানে বা পুঞ্টি উপাদান পরিশোষণে সক্ষম (Feeding roots)ও সক্রিয় শিকড়ের কাছাকাছি স্থানে সার প্রয়োগ করা হলে তাকে স্থানীয় প্রয়োগ পদ্ধতি (Local placement) বলে। এই পদ্ধতি সার ব্যবহারের একটি আধুনিক ব্যবস্থ।। সাম্প্রতিক- কানে মূল্য বৃদ্ধির মাধ্যমে অধিক ফলন প্রাপ্তির জন্য স্থানীয় প্রয়োগ পদ্ধতি বিস্তৃতি লাভ করহে। ফসল, মাটি ও সারের প্রকারভেদে স্থানীয় প্রয়োগের বেশ কতকগুলো পদ্ধতি উদ্জাবন করা হয়েছে, যেমন-

১. ব্যান্ড বা বেষ্নী পদ্ধতি

গাছের এক বা উভয় পার্শ্বে ৫ থেকে ১০ সেমি, নিচে, বা মাটির যত গভীরে বীজ বা চারা রোপণ করা হয়েছে তার ৫ সেমি. নিচে সার প্রয়োগ করাকে ব্যানড পদ্ধতি (Band placement) বলে। সারি ফসলের যেমন- গোলআলু, বেগুন, টক্মেটো, ফলের চারা ইত্যাদির ক্ষেত্রে সন্তোষজনকভাবে এই অবলম্নন করা যায়। ব্যান্ড পদ্ধতিতে প্রয়োগ করলে সার উপাদানের কার্যকারিতা বৃদ্ধি পায়। বিশেষ করে এ̈ঁটেল বুনট সম্পন্ন মাটিতে সার প্রয়োগের জন্য এই পদ্ধতি অধিক কার্যকর। এতে সমস্ত ফসফরাস ও পটাশিয়াম সক্রিয় উদ্ডিদ। শিকড়ের কাছাকাছি স্থানে অবস্থান করে (চিত্র 8)। জমিতে বিচ্ছিন্নভাবে জন্মানো আগাছা এই পুট্টি উপাদান পরিশোষণের তেমন সুযোগ পায় না। ব্যান্ড পদ্ধতিতে সার প্রয়োগ করলে গাছের বৃদ্ধি হার ত্বরান্বিত হয়। ফসল উদ্ভিদের সাথে ক্ষতিকারক আগাছার প্রতিযোগিতা কম হয়। অবশ্য বীজ বপনের সাথে সাথে অপেক্ষাকৃত শুষ্ফ ও চুনयूক্ত জমিতে এই পদ্ধতিতে ইউরিয়া সার প্রয়োগ করা ঠিক নয়। কারণ এক্ষেত্রে ইউরিয়া থেকে এমোনিয়া ও নাইট্রাইট উৎপাদিত হয়ে বীজের অভকুরোোদ্মে বা রোপণ করা চারার বৃদ্ধি ব্যাহত করতে পারে।

বেষ্টনী পদ্ধতির বৈশিষ্ট্য
সার প্রয়োগে সুবিধা
সারের প্রকার
প্রধান ফসল
প্রয়োগ সময়
প্রয়োগ পদ্ধতি
মন্তব্য
: সারের অপচয় রোধ হয়
: প্রধানত ইউর্টিয়া 3 মিউরেঁট দ্রব পাটাশ
: টমেতো, বেগুন, ফুলকপি, বাধাকর্সপি, শিম
: চারা রোপ্ের ২০ খেকে ৫০ দিন পর
: খুরপি দিয়ে মাটির সাতে মিশাননা
: বाংলাদেশ্ জनপ্রিয় रुচ্চে।

চিত্র 8 : বেষ্ধনী পদ্ধতি

চ্রি ৫: রিঙি বা গোলাকর পদ্জতি
২. রি૯ বা গোলাকার পদ্ধতি

বৃহ্দাকুতি গাছুর চারদিকে গোলাকার নালা কেটে সার প্রয়োগেক গোলাকার বা রিঙ পদ্ধতি বলে (চিত্র ৫)। গাছের গোড়া থেকে নালার দুরন্ব ১ থেকে ৩ মিটার এবং নালার প্রস্থ ও গখীরত ২০ থেকক 80 সেমি. হতে পারে। নারকেন, লেবু, পেয়ারা লিচুস্ অन্যাन্য ফল গাए্ এই পদ্ধতিত এবই সাথে প্রয়োগ করা याয়। नाলা কাটার সময়
 লাগিয়ে তারপর গুঁড়া করা মাটির সাথে সার মিশিয়ে দিতে হয়। সার প্রয়োগের পর নালায় ১০ থেকে ১৫ দিন অন্তর কল্যেক বার সেচের ব্যবश্থা করা উন্ত্য।

রিঙ বা গোলাকার পদ্ধতির বৈশিষ্ট্য
সার প্রয়োগে সুবিধা : সার কম লাগে
সারের প্রকার : সকল প্রকার সার

প্রধান ফসল
প্রয়োগ সময়
প্রয়োগ পদ্ধতি
মন্তব্য
: আম, লিচু, কাঁঠাল, নারিকেল, পেয়ারা, লেবু
: বছরে ২ বার আশ্বিন ও চৈত্র
: কোদাল দিয়ে নালা কেটে সার প্রয়োগ
: বাংলাদেশে জনপ্রিয় হচ্ছে।
৩. সারি পদ্ধতি (Row method)

দুই সারি ফ্সলের মাঝখানে নালা করে নালার তলদেশের মাটির সাথে সার মিশিয়ে দিলে সারি পদ্ধতি বলে। সারির মাঝখানে সাধারণত ১০ থেকে ১৫ সেমি. গভীরে এই সার প্রয়োগ করা হয়।

চিত্র ৮ : সারি পদ্ধতি

শাক-সবজি বিশেষ করে শীতকালীন শাক-সবজি, সরিষা, পে้য়াজ, রসুন ইত্যাদি কম দূরত্ব সম্পন্ন সারি ফসলে এই পদ্ধতি অবল্মী করা সুবিধাজনক।

প্রচলিতভাবে জৈব সার, ফসফেট সার ও পটাশিয়াম সার সরল ছিটটনো পদ্ধতিতে প্রয়োগ করে নাইট্রোজেন ও অন্যান্য দ্রবণীয় সার এই পদ্ধতিতে প্রয়োগ করা উত্তম। আবহাওয়া ও উপর মাটি শুষ্ফ থাকলল নাইট্টোজেন সার হিসেবে ইউরিয়া এই পদ্ধতিতে প্রয়োগ ভাল। কারণ মাটির নিচে তখনো কিছুটা আর্দ্রতা থাকে।

সারি পদ্ধতির বৈশিষ্ট্য

সার প্রয়োেে সুবিধা : সারের কার্যকারিতা বাড়ে
সারের প্রকার
: প্রধানত ইউরিয়া ও মিউরেট অব পটাশ, কিস্তি
প্রধান ফসল
: পালং শাক, ধনিয়া, মরিচ, লেটুস, গাজর, মূলা
প্রয়োগ সময় : চারা রোপণ/বীজ বপনে ২০ থেকে 80 দিন পর
প্রয়োগ পদ্ধতি : অগভীর নালা কেট্টে হাত ছিটানো ও মাটির সাথে মিশিয়ে দেওয়া
মন্তব্য : বাংলাদেশে বেশ জনপ্রিয়।
8. ড্রিল পদ্ধতি (Drill method)

যন্ত্রের মাধ্যমে বীজ বপনের সময় সাধারণত বীজের নিচে বা সংলগ্ন আশপাশে সার প্রয়োগ করাকে ড্রিল পদ্ধতি বলে। বীজ বপন যন্ত্র বা সিড ড্রিলের সাথে সংযুক্ত কোনো কোনো যন্ত্র দ্বারা বীজ বপন ও সার প্রয়োগ কাজ একই সাথে সমাধা করা যায়। পাট, গম, তিল, তিসি, সরিষা, প্রভৃতি ফসলে ফসফরাস ও পটাশিয়াম সার বা অন্যান্য বহু উপাদানিক বা যৌগিক সার ড্রিল পদ্ধতিতে প্রয়োগ করা যায়। এই পদ্ধতিতে প্রয়োগের জন্য সারের প্রকার মনোনয়নে সাবধান হতে হয়।

বীজ ও সারে মিশ্রিত হয়ে বীজের অষ্বুরোদগমে বিঘ্ন সৃষ্টি হলে এই পদ্ধতি অবলম্মন না করাই ভাল। আমদের দেশে এসব পদ্ধতির ব্যবহার এখনো সীমিত। তবে সহজ্ে প্রয়োগ করার টপযোগী ব্যৗথ ধরনের যষ্ত্র উদ্ভাবন করা হলে এবং সারিতে বীজ বপন ও সার প্রয়োগ একই সাথে সামাধা করা সম্ভব হলে ড্রিল পদ্ধতির ব্যবহার সম্প্রসারিত হতে পারে। যন্ত্রপাতির সাহায্যে ড্রিল পদ্ধতিতে অল্প সময়ে ও অল্প ব্যয়ে অধিক জমিতত সার প্রয়োগ করা যায়। এই পদ্ধতিতে প্রয়োগ করা হলে ফসফরাস ও পটাশিয়াম সারের কার্যকারিতা বেশ বৃদ্ধি পায়। ফ্সলের বৃদ্ধি উন্নয়ন ভাল হয়।
৫. লাঙन তল পদ্ধতি (Plough Bole method)

লাঙলের ফালের নিচের স্তরের মাটিতে সার প্রয়োগ করা হলে একে লাঙলল তল পাদ্ধতি বলে। লাঙলের সাথে বিশেষ ধরনের ব্যবস্থা বা বিশেষ যন্ত্র জুড়̣ দিয়ে একই সাথে জমি চাষ ও সার প্রয়োগ করা যায়। আমাদের দেশে এরকম পদ্ধতির ব্যবহার প্রায় নেই বলললই চলে। ফসফরাস ও পটাশিয়াম সার প্রয়োগের জন্য এই পদ্ধতি সষ্ভাবনাময়।

সিঞ্চন, গভীর ও সেচ পানিত্ সার প্রয়াগ ও অন্যান্য পদ্জতি : সার প্রয়োগের বিভিন্ন ধরননর পদ্ধতি সম্পক্কে আলোচনা করা হালে আমাদের দেশীয় উপল্যেগিতার উপর ভিত্তি করে সংপ্লিষ্ট ক্রেত্রে সেণুলো প্রয়োগ করা সষ্ᅥব।

সিঞ্চন পদ্ধতি

সিঞ্চন যত্ত্রের মা্যম জমিতু তরল সার প্রয়োগ করা হলে একে সিঞ্কন প্রয়োभ
 যায়। কোনো কোনো সময় ছ্রাকনাশক বা কীট্নাশক ওষুধ্ধর সাথে বিভিন্ন সার উপাদান জমিতে প্রয্যোগ করা यায়। অণু পুষ্টি উপাদানের ঘাটতি দেখা দিলে তা সিঞ্চন যс্ব্রের
 উদ্ডিদের পুষ্টি বিধান করে।

সিঞ্চন প্রয়োগকে অনেক সময় পাত প্রয়োগও বলা হয়। সাধারণত কৃষিত|ক্বিক
 প্রয়োগের সুপারিশ করা হয় না। কারণ এসব সারের তরল (পোনি) পরিষাণ এতো বেশি লাগে বে তাত্ প্রয়োগ ব্য়য় ও সময় অन্নেক বেড় যয়় এবং বিষাক্ততাও দেখা দিতত পারে। এসব সার্রে কার্यকারিতাও এই পl্লতিতে কম ব্যেত পার্। ফল বাগানে এবং

 সার শীী্র কার্যকর হয় না। সেক্ষেত্রে সিঞ্চন প্রয়াগগ বিব্রেনায় আসতে পারে।.

তাছাড়া গৌণ উপাদানের ক্কেত্রে সারের পরিমাণও খুব কম থাকে। কোনো কারণণ
 করা যায়।

কীটটনাশক ও রোপনাশক দ্র্য এবং সেচ পানির উপর প্রয়োগের সাথে অাপুনিককালে সার উপাদানের তরল বা সিঞ্চন প্রয়োগ গুুুप্ব লাভ করহছ।

অবশ্য «্য সকন সার তরল আকারে বাজারজাত করা হয় (ভেমন-তরল এমোনিয়া এবং অণু উপাদান দ্দবণ) সেগুলো সিঞ্চেন যন্ত্রের সাহায্যে প্রয়াগ করা যায়। তবে সাধারণजাবে সিঞ্চন পদ্ধতিতে কম পরিমাণ প্রয়োজনীয় সারসমূহ প্রয়োগ করা সুবিধাজনক।

সিঞ্চন প্রয়োগ হার

নিচ্চ অণু পুষ্টি উপাদান সারের সিঞ্চন প্রঢ্যোগের হার বিষয়় উদাহরণ দওওয় হলা-
 পানিতত দ্রীীডূত হয়, ১ থেকে ২.৫ কেজি য্যাঙ্জানিজ/হেক্টর)

খ) লোহ কেরাস সালফফিট 8 থেবে ৬\% দ্রবণ,
গ) জিষ্ক-জিজ্ক সালফেট৩ ৩থেকে 8 কেজি/১00 গ্যালन পানি
ঘ) মলিবডডনাম ১ ককজি/হৃই্ঠী, সোডিয়াম মলিবডেট।
 অনেক কম বলে সিঞ্চন পদ্ধতিত় প্রয়োগ করা যায়।

মাডবল প্রয়াগ

কাদা দ্বারা তৈরি বলের অভ্যন্তরে সার দ্রব্য হাত দ্বারা মাটির গভীরে প্রবেশ করিয়ে সার প্রয়োগ করাকে মাডবল (Mud ball) গভীর প্রয়োগ পদ্ধতি বলে। এটি একটি সাম্প্রতিক উদ্ডাবিত পদ্ধতি। এশিয়া মহাদেশে ও উষ্ণ আর্দ্র আঞ্চন্লর ধানের জমিতে (ধানের প্রতি ৪টি চারা বা গুছির মাঝখানে একটি মাডবল হিসেবে) এই পদ্ধতিতে সার প্রয়োগ করে ফলন বৃদ্ধি করা সম্ভব হয়েছে ও অধিক অপচয় আশংকাযুক্ত নাইট্রোজেন সার (যেমন, ইউরিয়া) এই পদ্ধতিতে প্রয়োগ করে এর কার্যকারিতা বাড়াননা সম্ভব হয়েছে। অবশ্য বাংলাদেশে এই পদ্ধতি এখনো ব্যাপকতা লাভ করে নাই।

চিত্র ৭ : মাডবল প্রয়োগ

মাডবল প্রয়োগ পদ্ধতির বৈশিষ্ট্য

সার প্রয়োগে সুবিধা : সারের কার্यকারিতা বাড়ে
সারের প্রকার : ইউরিয়া মাডবল
প্রধান ফস্গ. : রোপণ ধান
প্রয়োগ সময় : চারা রোপণের মাস খানেকের মধ্যে
প্রয়োগ পদ্ধতি : 8টি ধানের গুছির মাঝখানে হতে আঙুলে দাবিয়ে দেওয়া
মন্তব্য
: বাংলাদেশে প্রচলনের চেষ্টা চলছে।
গভীরপ্রয়োগ
আজকাল বেশ কিছু আন্তর্জাতিক সার উৎপাদনকারী সংস্থা বড় দানার আকারে (একটি দানার ওজন প্রায় ১ গ্রাম) সার উৎপাদন করছছ। এসব সুপার দানা মাডবলের অনুরূপ মাটির গভীরে প্রয়োগ (Deep Placement) করা হয়। প্রধানত ধানের জমিতে নাইট্রোজেন সার (ইউরিয়া) ব্যবহারের ক্ষেত্রে এই পদ্ধতি কার্যকর হয়। গভীর প্রয়োগ পদ্ধতির একটি শর্ত হচ্ছে সার বড় দানার আকারে উৎপাদন করতে হ্য়। একক উপাদান ব্যতীত একাধিক উপাদানের ফর্মুলেশনে এ ধরননর সার বা যৌগিক সার উৎপাদন সম্তব। সার দ্রব্য দুই বা তিনটি উপাদানের সমন্নয়ে রাসায়নিক প্রক্রিয়ায় উৎপাদন কর়লে একে যৌগিক সার বলা হয়। ধানের জমিতে ইউরিয়া সুপার দানার কার্যকারিতা বাংলাদেশে কিছ্টূা বেশি বলে জানা গেছে।

সেচ পানিতে সার প্রয়োগ

বহুকাল আগে থেকেই সেচের পানির সাথে সার প্রয়োগ পদ্ধতি প্রচলিত আছে। অনেক আগেও সেচের নালায় গোবর ফেলে রাখা হতো। বর্তমানকালে এনহাইড্রাস এমোনিয়া বা অন্যান্য সারদ্রব্য সেচের পানির সাথে পরিমাপক মিটার সংযুক্ত করে প্রয়োগ করা হয়। বর্ষণ সেচের সাথে সার দ্রবণ প্রয়োগ করা যায়।

সেচের পানির সাথে যে সার দ্রব্য প্রয়াগ করা যায় বা যায় না সে সম্পর্কিত বর্ণনা নিচে উল্লেখ করা হলো :

ক.) যেসব সার প্রয়োগ করা যায়

ইউরিয়া, এমোনিয়াম সালফেট, এমোনিয়াম নাইট্রেট, মিউরেট অব পটাশ, পটাশিয়াম সালফেট, পানি-দ্রবনীয় বোরাক্স বা বোরেট, এমোনিয়াম পলিফসফেট (১৫-৬০-০), এমোনিয়াম ফসফেট (১৩-৩৯-০, ১১-৪৮-0), ডাই-এমোনিয়াম ফসফেট (২১-৫৩-0), তরল এমোনিয়াম ফসফেট (৮-২৪-0), ইউরিয়া এমমানিয়াম ফসফেট (২৫-৩৫-০)।

খ) যেসব সার প্রয়োগ করা উচিৎ নয়

ফসফরিক এসিড, এনহাইড্রাস এমোনিয়া দ্রবণ (একুয়া এমোনিয়া) এই পদ্ধতিতে প্রয়োগ করলে এসব এমোনিয়া সারের নাইটোজেন অধিক হার অপচয় হতে পারে এবং ফসফরিক এসিড গাছের কিছুটা ক্ষতি করে, যদিও সবগুলোই পানি-দ্রবণীয় অবশ্য সেচের পানির সাথে এমোনিয়া সারের ব্যবহার অনেক উন্নত দেশে বেশ সস্প্রসারিত হয়েছে।

গ) যেসব সার প্রয়োগ করা যায় না

সুপার ফসফেটজাতীয় সার, উপাদানিক সালফার, জিপসাম, চুন ও কিছু মিশ্র সার। এসব দ্রব্য পানিতে সমভাবে দ্রবীভূত হয় না।

এখানে উল্gেখ্য, সেচ পানিতে পরিমাণ মতো সার দ্রবীভূত করে নিতত হয়। তারপর পানিপ্রবাহ মেপে সারের বা প্রদত্ত উপাদানের মাট পরিমাণ নিয়ত্তণ করা হয়। বর্ষণ প্রয়োগের সাথে সার উপাদানের উদ্রিদ দোহ চলাচল ক্ষমতাও গুরুত্ত্বপূর্ণ। বিভিন্ন উপাদানের উদ্ভিদের অভ্যত্তরে চলাচল ২১ নং সারণিতে উপস্থাপিত হর্লা। সারণি ২১ : উদ্ডিদের অভ্যন্তরে পুষ্টি উপাদান চলাচলের বিবরণ

চলাচলকারী	আংশিক চলাচলকারী	চলাচল কর্র না	মন্তব্য
নাইট্রোজেন পটাশিয়াম ফসফরাস ক্লোরিন সালফার	জিভ্ক কপার ম্যাঙ্গানিজ মলিবডেেনাম	ক্যালসিয়াম ম্যাগনেশিয়াম ম্যাগনেশিয়াম ম্যাগননশিয়াম	চলাচলের মাধ্যম্রে পাতা থেকক অন্যান্য অংশে পরিবাহিত হয়

উপর পেকে নিচচ ক্রমানুসারে চলাচল বেশি। উৎসঃ বুক্লভাক ও উইতার ,১৯৬১।

তরল সার প্রয়োগ

নাইট্রোজেন সার হিসেবে. এনহাইড্রাস এমোনিয়া লাঙল তল বা তরল আকারে সেচের পানির সাথে প্রয়োগ করা যায়। মৃত্তিকা নিষ্বেক পদ্ধতিতেও এসব সার প্রয়োগ করা যায়। মৃত্তিকা নিষ্বেক ও মৃত্তিকা ড্রিপ একই ধরনের পদ্ধতি। আধুনিক কৃষি বিশ্বে এমোনিয়া সার প্রয়োগ বেশ ব্যাপকতা লাভ করছে।

সার প্রয়োগের পদ্ধতির সুবিধা ও অসুবিধা

ছিটান্না পদ্ধতিতে সুবিধা
১. সার প্রয়োগজনিত বিষাক্ততার আশংকা কম বলে একই সাথে বা অল্প সময়ে অধিক পরিমাণ সার প্রয়োগ করা যায়।
২. সার ছিটিয়ে প্রয়োগ করলে শ্রম ও সময় ব্যয় কম হয়। অবশ্য শক্তিচালিত ছিটানো যন্ত্র ব্যবহার কর্লে জ্বলানিিজনিত অতিরিক্ত ব্যয় হরে পারে।
৩. জমিতে দ্রুত বীজ বপন বা রোপণ করা যায়, কারূণ সারের সহনীয় প্রয়োগর চেয়ে এতেত ঝামেলা কম।
8. কঠিন আকারের সব সার দ্রব্য ও জৈব সার অতি সহজে ছিটানা পদ্ধতিতে প্রয়োগ করা যায়।
৫. সার দ্রব্য ছিটিয়ে প্রয়ো করে চাষ দ্বারা মাটির সাথে মিশিত়ে দিলে (বিশেষ কর্রে ফসফরাস ও পটাশিয়াম) উদ্ডিদের শিকড়ে অধিক পার্শ্ব বিস্তার ঘটে। স্থানীয় প্রয়োগ শিকড়ের বৃদ্ধি কেবল সার প্রয়োগ স্থানেই অধিকতরভাবে সীমাবদ্ধ রাখে।
৬. বিপুল আয়তননের জমিতে সার প্রয়োগ করার অর্থনৈতিক ও উত্তম পদ্ধতি হিসেবে ছিটানা পদ্ধতি অধিক বিবেচিত হয়।
१. শ্রমিক স্বল্পতার সময়ে সার প্রয়োগের জন্য ছিটানো পদ্ধতি অধিক সুবিধাজনক।
৮. স্থায়ী তৃণভূমিতে ছিটানো পদ্ধতি অত্যাবশ্যক।
৯. মিশ্র ফস্সল ও অनুফসল (Relay crop) ছিটানো পদ্ধতি উত্তম।

ছিটানো পদ্ধতিতত অসুবিধা

১. মাটিতে ফসফরাস ও পটাশিয়ামের আবদ্ধ হয়ে যাওয়ায় সম্ভাবনা বেড়ে যায়। এ্রটটল বুনটসম্পন্ন মাটিতে প্রয়োগ করলে আবদ্ধ হওয়ার কারণে ফসফরাস ও পটাশিয়াম প্রীপ্যতা ও কার্যকারিতা কমে যেতে পারে।
২. চাষ দ্বারা মাটির সাথে মিশানো হয় বলে পুষ্টি উপাদানের ঘনত্ব কম হয়। এজন্য ফসল উদ্ডিদের প্রারম্ভিক বৃদ্ধি বিশেষ করে স্বল্পমেয়াদি ফসলের ঝেমন শাক-সবজি, গোলআলু ও পেঁয়াজের বৃদ্ধি হার কম হতে পারে।
৩. জমির সব স্থানে পুষ্টি উপাদান সমভাবে থাকে বলে আগাছার প্রকোপ বেড়ে যায়।
8. ছিটানো পদ্ধতিতে সারের অপচয় কিছুটা বেশি হতে পারে।
৫. প্রয়োগের পর মাটির সাথে গভীরভাবে মিশিয়ে না দিলে ফসফরাস ও পটাশিয়াম সারের কার্যকারিতা কম হতে পারে।
৬. সাধারণত মাঠ ফসল্লে অণু উপাদান সার প্রয়োগ করা হয় না বা প্রয়োগ করল্লেও সার বিশেষে কার্যকারিতা কম হয়।

স্থানীয় প্রয়োগ পদ্ধতিতে সুবিধা

১. সার দ্রব্যের কার্যকারিতা বাড়ে। অর্থাং অল্প্য সার প্রয়োগ করে অধিক ফসল পাওয়া . याয়।
২. শিকড়़ের কাছাকাছি স্থানে সার প্রয়োগ করা হয় বলে গাছ তাড়াতাড়ি বড় হয়।
৩. স্বল্পমেয়াদি ফসন্নর জন্য এই পদ্ধতি অধিক কার্যকর।
8. সার থেকে উপাদানের অপচয় হওয়ার আশংকা কর্ম যায়।
৫. একই জমিতে প্রয়োগের জন্য ছিটনো পদ্ধতির চেয়ে স্থনীীয় প্রয়োগে সারের পরিমাণ কম লাগে।

স্থানীয় প্রয়োগ পদ্ধতিরে অসুবিধা

১. শিকড়ের কাছাকাছি স্থানে প্রয়োগ করা হয় বলে সারের পরিমাণ ইউরিয়া বেশি হয়ে গেলে উৎপাদিত এমোনিয়া সাময়িকভাবে শিকড়ে বিষাক্তুতা সৃষ্টি হতে পারে।
২. দেশীয় গতনুগতিক পদ্ধতিতে প্রয়োগ করতে সময় ও শ্রম বেশি লাগে।
৩. শিকড়ের পুষ্টি উপাদান পরিশোষণ এলাকা কম থাকায় শিকড়ের বিস্তৃতি বা গভীরতা কম হয়।
8. জমিতে ফসল থাকা অবস্থায় প্রয়োগ করা হলে ফসল উদ্ভিদের কিছু কিছু শিকড় ছাটইজনিত কারণে সার মিশিয়ে দেওয়ার জন্য কোদলানোর সময় ক্ষতগ্গ্রত্ত হরে পারে।
৫. প্রয়োগ করার সময় মাটিতে আর্দ্রতা বেশি থাকলে সার প্রয়োগ অসুরিধধা হতে পারে।

সিষ্চন প্রয়োগ পদ্ধতিতে সুবিষা

১. সার প্রয়োগের মাধ্যমে গৌণ উপাদানের অপুষ্টি ঘাটতি পরিপূরণে এই পদ্ধতি অধিক ব্যবহৃত হয়।
২. হান্কা বুনট বা বেলে মাটিতে চুয়ানী কম হয় বলে সারের কার্যকারিতা থাকে।
৩. এই পদ্ধতিতে প্রয়োগ করা সারের অংশবিশেষ মাটিতে পতিত হ্লেও তা পরিশোষিত হতে পারে।
8. অধিক পরিমাণ সার মূল সার হিসেবে মাটিতে প্রয়োগ করার পর অংশবিশেষ সিঞ্চন প্রয়োগ করা অধিক সুবিধাজনক।
৫. প্রতিকৃল অবস্থার কারণে মাটিতে সরাসরি সার প্রয়োগ সম্তব না হুলে সিঞ্চন প্রয়োগ করা যায়। সিঞ্চন প্রয়োগ মাটিতে আর্দ্রতা কম থাকলেও চলে।
৬. তরল সার প্রয়োগ সুবিধা হয় সার উপাদানের অপচয় তুলনামূলক কম হয়।
9. মাটিতে জিষ্ক ও ফসফরাস আবদ্ধ হওয়ার সম্ভাবনা থাকলে জিজ্ক প্রয়োগের জন্য সিঞ্চন পদ্ধতি অবলম্মন করা যেতে পারে।
৮. তরল রোগ-পোকানাশক দ্রব্যের সাথে মিশিয়েও প্রয়োগ করা যায়।

সিঞ্চন প্রয়াগগের অসুবিষা

১. পাতায় পরিশোষিত হওয়ার পর উদ্ভিদের অন্যান্য অংশে পরিবহণ সহজতা সব উপাদানের সমান নয়। যেমন-ক্যালসিয়াম ও ম্যাগনেশিয়াম সহজে পরিবাহিত হরে পারে না। জিঙ্ক, কপার ম্যাঙ্গানিজের আংশিক পরিবহণ সংঘটিত হতে থাকে। অবশ্য নাইট্রোজেন সহজে চলাচল করতে পারে।
২. এই পদ্ধতি বেশ ব্যয়বহুল। বিশেষ করে অধিক তরলীকৃত সার প্রয়োগ করলে তা বেশ সময় ও ব্যয়সাপেক্ষ হয়ে পড়ে।
৩. সার দ্রব্যের মোট পরিমাণ বেশি হলে তা সিঞ্চন পদ্ধতিতে প্রয়োগ করা যায় না।
8. উপাদান বিশেষে সার বা দ্রবণের ঘনত্ব বেশি হয়ে গেলে ফসলের কতি হয়।
৫. আর্দ্র আবহাওয়ায় বা বৃষ্টি পূর্ণ দিনে এই পদ্ধতিতে সার প্রয়োগ না করা ভাল। প্রয়োগ করলেও সারের অপচয় বেড়ে যায়।
৬. প্রয়োগের জন্য আধুনিক উন্নত যন্ত্রপাতি দরকার।
৭. বাণিজ্যিক সারে ব্যহशত পরিপূরণকরী ও অन্যান্য অবিশুদ্ধ দ্রব্য গাছের পাতায় বিযাক্তুত সৃষ্টি করতে পার।

জমিতে সার প্রর্যোগ পদ্ধতি নির্ধারণে মৃত্তিকা গুাবলীর প্রভাব

প্রয়োগ পদ্ধতি নির্ধারণ ফসলनর প্রকার ও সারের বৈশিষ্টেের সাথে সাথে তা মৃত্তিকর গুণাবनीর উপরও নির্ত্রশীল। মাটির এতদসংপ্লিষ্ট ধর্ম্মের মধ্যে প্রধান প্রধান বিষয় সম্পর্কে বর্ণনা করা হলো।

डৌত্র্ম

১. মাটির বুনট, লঙ্লল স্তু ও নিম্মতৃমিতে মৃত্তিক একক কণার পারম্পরিক অনুপাত।
২. কর্দম কণার প্রকার ১:১, ২:১, ২:২ সিলিকেট ও ছাইড্রাস অক্সাইড্সমূহ।
৩. পানি ধারণক্কমতা-মেট ও প্রাপ্য পানি ধারণক্মতা।
8. মাটির তাপーতাপাष্ক/ তাপ ক্ষমত ও তাপ পরিবর্তন।

बाাসায়निक ধर्म

3. অম্নমন : ক্যালসিয়াম, ম্যাগনেশিয়াম, লোহা এবং এলুমিনিয়ামের উপস্থিতি।
২. লবণ ও আয়ন, চুন দ্রব্যের উপস্থিতি ও লবণাক্ততা, ধনাত্মক ও ঋণাত্মক আয়ন বিনিময় কমত।।
৩. মাটির বাফার ক্ষমতা : মৃত্তিকা দ্রবণের রাসায়নিক প্রকৃতি ও কলয়ডের উপস্থিতি।

জৈবিক ধর্ম

১. জৈব পদার্থের পরিমাণ-মোট বিযোজনযোগ্য জৈব পদার্থ ও হিউমাস।
২. অণুজীবের প্রকার-সবাত ও অবাত অণুজীবের সং্যা-ছত্রাক, ব্যাকটেরিয়া ও একটিনোমাইসেটিস।
৩. উপকারী অণুজীবের সংখ্যা-জৈৈ পদার্থ বিযোজনকারী, নাইট্রিকরণ, নাইট্রোজেন সংযোজনও অন্যান্য প্রক্রিয়ার সাথে সংশ্লিষ্ট উপরোক্ত গুণাবলীর মধ্যে মাটির বুনট, কর্দমের প্রকার, মাটির অম্লমান ও চুনের উপস্থিতি সবচেচ়ে গুরুত্বপুর্ণ।

মাটির আর্দ্রতা, তাপমাত্রা, আয়ন বিনিময় কমতত বাফার, অণুজীব কার্যাবলী পরস্পরযুক্ত এবং এগুলো সামগ্রিকভাবে মাটির ভৌত ও রাসায়নিিক অণুজীব কার্যাবলী পরস্পর সম্পর্কযুক্ত এবং এগুলো সামগ্রিকভাবে যাটির ভৌত ও রাসায়নিক গুণাবলী প্রভাবিত করে।

রাসায়নিক সারের প্রয়োগ পদ্ধতিত্ত কর্দমের প্রভাব

এঁটেল মাটিতে কর্দমের মধ্যে ২ঃ১ প্রকারের কর্দম কণা বেশি থাকলে ধনাত্মক আয়নে সংযোজন বেশি হয় বলে স্থানীয় প্রয়োগ পদ্ধতি অধিক. কার্যকর হয়।

মাটির রাসায়নিক ধর্ম সার দ্রব্যের প্রভাব

মাটির রাসায়নিক গুণাবলীর মধ্যে অম্লমানের উপর বিভিন্ন প্রকার রাসায়নিক ও জৈব সাররর প্রভাব খুবই তাৎপর্যপূণ। কোন জমিতে বহু দিন যাবৎ অম্লীয় সার ব্যবহার করলল এবং সে জমিতে প্রয়োজনমত চুন প্রয়োগ করা না হলে মাটির অম্লতত্ব বেড়ে যেতে পারে। তাই যে কোনো জমিতে সার প্রয়াগ করার সময় এতে অম্নত্ব ও ক্ষারত্ব সৃষ্টির সণ্তাব্যতা আবশ্যকভাবে বিবেচনা করতে হয়। এগুলো সকল দ্রব্যের গুরুত্বপূর্ণ 'ধর্ম। মাটির রাসায়নিক গুণাবন্নী, উর্বরতা, উপাদান ক্ষমতা, চুন প্রয়োগ ও পরিশ্াধন কার্যক্রমের জন্য সার দ্রব্যে অম্লাষ্ক ও ক্ষারাভ্ক সশ্পর্কে জ্ঞান থাকা দরকার।
সারণি ২২: সারের প্রয়োগ পদ্ধতি, মাটির গুণাবলী ও ফসল উপযোগিতা

প্রয়োগ পদ্¢তি	সার	মাটির প্রকার	প্রধান ফসन
সরুল ছিটানো	সকল কঠঠন	अধিকাং্শ মাটি	अধিকাংশ মাঠ ফসল্
পার্শ্ব প্রয়োগ	আকারের সার নাইট্রোজ্নেন	ভারি মধ্যম	সারি ফসল্গ
উপরিপ্রয়োগ	ফসফরাস	अধিকাংশ মাটি	বহহ্বর্ষজীবী সার়ি ফসল
	ও পটাশিয়াম		
উপরিপ্রয়োগ	ফসফরাস ও পটাশিয়াম	অধিকাংশ্শ মাটি	তৃণভূমি রেনজু ও মিডো
লাঙ্র তল	ফরফরাস ও পটাশিয়াম	অধিকাংশ মাটি	সারি ফসन
ব্যান্ড প্রতয়োগ	সকল স়ার	মধ্যম	স্বল্পণ্যয়াদী সারি ফসল্র
রিঙ পদ্ধতি	সকল সার	ও ডার বুনট অধিকাংশ মাটি	ফল বৃক্ষ
মাডবল এবং গভীর প্রয়োগ	প্রধানত নাইট্রোর্জ	কর্দমাক্ত মাটি	ধান
সিঞ্চন পদ্ধতি	গ্গৌী উপাদান	প্রতিকুল মাটি	প্রধানত সবজি ও ফল গাছ।

অম্লাঙ্ক

কোন্গা জমিতে ১০০ একক পরিমাণ কোরনা সার ব্যবহারের পর যে অম্লুত্ব উৎপাদিত হয় এবং তা প্রশমিত করার জন্য যে পরিমাণ চুন প্রয়াগ করার প্রত়াজন হয় তাকে উক্ত সার দ্রব্যের অম্লাভ্ক বাল। কোন জমিতে ১০0 কেজি ইউরিয়া বা ১০0 কেজি এমোনিয়াম সাল্ফেট ব্যবशাররর ফলে সৃষ্ট অম্লত্ব প্রশমের জন্য ৮০ ও ১১০ কেজি চুন প্রয়োপ করতে

হয়। অর্থাৎ ইউরিয়া ও এমোনিয়াম সালফেটের অম্লাভক যথাঞ্রমে ৮০ ও ১১০ এমনিভাবে মাটির অম্লত্ব বৃদ্ধি করে। কারণ প্রতিটি রাসায়নিক সারের নির্দিষ্ট অম্লাষ্ক মান (সংখ্যা) রয়েছে। এখানে চুন বলতে ক্যালসিয়াম কার্বনেট বা এর সমমানের চুন দ্রব্য বিবেচনা করা रे़।

ক্ষারাঙ্ক

কোনো জমিতে ১০০ একক পরিমাণ সার দ্রব্য ব্যবহারের পর যে ক্ষারত্ব সৃষ্টি হয় এবং তা প্রশমিত করার় জন্য যে পরিমাণ অম্লীয় দ্রব্য প্রয়োগ করতে হয়, তাকে সেই সার দ্রব্যের ক্ষারাভ্ক বলে।
সারণি ২৩ : বিভিন্ন সার দ্রব্যের অম্লাভ্ক ও ক্ষারাভক

সার	Fম্লাse	ক্ষারাভক
এমোনিয়া সালফেট	230	-
এনহাইড্রাস এমোনিয়া	>8b	-
ক্যালসিয়াম নাইট্রে	-	२०
সোডিয়াম নাইট্টেট	-	২৯
এমোফস	『O	-
ইউরিয়া	b-8	-
সায়ানেমাইড	-	৬৩
প্টাশিয়াম নাইট্রেট		২
কেলনাইট্রো	২১	-
ইউরিয়া এমমানিয়া লিকার	b-	-
শুষ্ক রক্ত	২৩	-
পেরুভিয়ান গুয়ানো	>8	-
গেরবেজ টেংকেজ	-	9
প্রসেস টেংকেজ	-	১区
তুলাবীজ মিল	৯	-

8। কমপোস্ট সার

বর্তমানে সচরাচর ব্যবছৃত জৈৈব সার যেমন- গোবর, হাঁস-মুরগির বিষ্ঠা, চা-পাতা, খেল, হাড়ের গুঁড়া, শিং গুঁড়া, শুকনো রকক্ত, কোনোটাই এককভাবে সুষম সার নয়। কিন্তু এসব বর্জ্য দ্রব্যের সংমিশ্রণে এন্টিভৈটর দ্বার়া পঁচিয়ে পরিশোধন করে ও শুকিয়ে কমপোস্টে তৈরি কররে তা সুষম সারে পরিণত হয়। এভাবে তৈরি সুষম সার ফসলের ফলন ও গুণাগুণ বাড়ায়। ফসর্লে রোগ-পোকার আক্রমণ কম হয়।

নিচে কমপোস্ট সার ও সাধারণ জৈব দ্রব্যের পার্থক্য দেখানো হলে।।
সারণি ২৪ : সাধারণ জৈৈব দ্রব্য ও কমপোস্ট সারে পার্থক্য

সাধারণ জৈব দ্রব্য	কমপাস্ট সার
মাটিতে পচাতে মিশতে সময় লাগে	মাটিতে সহজে পচে-মিশে যায়
আর্দতত ও আয়তন বেশি, দूर্গন্ধ আছে	আর্রুত ও আয়তন কম দুর্গী নাই
পুক্টির পরিমাণ কম ২ থেকক ৪\%	পুষ্টির পরিমাণ বেশি করা যায় ৮ থেকে ১৫\%
অস্বাস্থ্যকর অবস্থা সৃষ্টি করে	পরিবেশ স্বাস্থ丶কর থাকে
সরাসরি ব্যবशর হয়	প্রক্রিয়াকরণে কর্মসংস্থান হ়
পরিবহণ অসুবিধাজনক	পরিবহ্ণ থুবই সুবিধাজনক
প্রধানত এক ধরনের হয়	বিভিন্ন ফর্মুनায় তৈরি করা যায়

কমপোস্ট উৎপাদননর বিস্তারিত পদ্ধতি "পরিবেশ বিজ্ঞান মৃত্তিকা জীব ও জৈব সার গ্রন্থে বিস্তারিত আলোচনা করা হয়েছে। এখানে কেবল কয়েকটি প্রশাসনিক ও প্রয়োজনীয় তথ্য তুলে ধরা হলো।

কমপোস্ট তৈরির আধুনিক পদ্ধতি
দিনে দিনে কমপোস্ট দ্রব্যের চাহিদা বৃদ্ধি পাওয়ায় কমপোস্ট তৈরির জন্য নতুন নতুন পদ্ধতি উদ্ভাবন করা হচ্ছে। এর মধ্যে একটি নতুন উন্নত পদ্ধতি হলো আবর্জনা দ্রব্য দ্রুত পচানোর জন্য জীবাণু বা এক্টিভেটর ব্যবহার করা।

চিতে : ক্মলোশ্ট কাঠার্ম

কমপোস্ট কাঠাম্মা তৈরির নিয়ম : কমপোস্ট তৈরির অর্ধস্থায়ী পাকা কাঠামো। তিন পাশে ইটের দেওয়াল তৈরি করে এবং তাত আবর্জনা ও এক্টিভেটর দিলে সহজেই পচে যায়। বসত-বাড়ি, হাট-বাজার এবং পৌরসভার স্থানে স্থানে এই পদ্ধতিতে সহজেই কমপোস্ট তৈরি করে তা মাঠে ব্যবহার করা যায়। এক থেকে দুই মিটার দৈর্ঘ্য, প্রস্থ ও উচ্চতায় এই কাঠামো তৈরি করাও সহ্জ, ব্যয়ও কম। আবর্জনা ফেলে পানিও এক্টিভেটর দেওয়ার পর একটি পলিতিথন শিট দ্বারা ঢেকে দিলে তেমন দুর্গন্ধও হয় না, অথচ আবর্জনা দ্রুত পচে যায়।

চিত্র ৯: কমপোস্ট তৈরির অস্হায়ী কাঠামে।
অস্থায়ী কমপপাস্ট কাঠাম্মা তৈরির নিয়ম : কমপোস্ট তৈরির জন্য পাকা কাঠামো স্থাপন করা ব্যয়সাধ্য মনে হলে বা সুবিধা না থাকলে স্থানীয়ভাবে প্রাপ্ত ছোট ছোট খুটি দ্বারা অস্থায়ী কাঠামো তৈরি করা যায়। এই কাঠামোতেও আবর্জনা, এক্টিভেটর ও পানি দিয়ে চেলে দিলে তুলনামূলকভাবে দ্রুত আবর্জনা পচে যায়। গাছের ডাল-শাখা বাঁশের চটি, বর্জ্য খুটির অশ্ ও আড়াআড়ি বাতা দিয়ে সহজেই এই কাঠামো তৈরি করা যায়। বসতবাড়ি, খামার, এমনকি জমির পাশেও এই কাঠামো তৈরি করা যায়। কমপোস্ট তৈরির এটি একটি গ্রামীণ পদ্ধতি। এক থেকে দুই মিটার দৈর্ঘ্য, প্রস্থ ও উচ্চতার কাঠামো তৈরি করা উত্তম।

নানাভাবে এভাবে কমপোস্ট উৎপাদন করা যায় যেমন-
ক. জমির এক কোণায় আবর্জনা জমিয়ে তাতে এক্টিভেটের দিয়ে পলিথিন কাগজ দ্বারা ঢেকে রাখা।

च. निर्मिষ্ট আকার আকৃতির ক্মপোশ্ট ড্রাশে আবর্জনা জমিয়ে তাতে এক্টিভেটরঁ ব্যবহার করা। বাড়ির এক কোণায় বা ছাদেও এ ধরনের কমগোস্ট ড্রাম ব্যবহার করা যায়।

গ. টবে বা গাছ রোপণ গর্ত্র আবর্জনা জমিয়ে এক্টিভেটর প্রয়োগ করলে অন্স্প দিরনর মধোই তা পঢে গিয়ে গাছ রোপণের উপযোগী হয়।

এখানে চিত্রির মাধ্যমে বেড়ার অভ্যন্তরে, ড্রামে এবং পাকা কাঠামোয় কমপোস্ট তৈরি এবং আবর্জনা চূর্ণ করার স্বব্যাখ্যাক্রত চিত্র দেওয়া হলো।

জালनর কাঠামো তৈরি

কাঠামাত আবর্জনা ফেলাননা

আবর্জনাভর্তি কাঠামা

স্ত্পীকৃত আবর্জনা প্চাতনা

চিত্র ১০: জালের তৈরি কমাপাশ্ট কাঠামো
 কাঠামে তৈরি কর়া যায়।)

চিত্র ১১ : আবজন্না চূর্ণকারী ছোট যন্ত্র

চिত্র ১২: স্থুল কাচ্ঠুল আবর্জনা চূণ্ণন যন্ত্র
(বম্প্গাস্ট ত্তি করার আবর্জনায় অনেক

 করে निजन बমাপাল্ট゙ তাড়াতাড়ি পচে। এসব
 বাগা आবর্জ্জনার পরিমাণ ক্রম যায়। হ্র্র করার

 ডान, लाथा, ইँ्डाना।

 দ্রবা ব্যবহার করল্ন কমপপার্টের পরিমাণ বাড়़। এই
 रेख़1)

চিত্র ১৩: পাতা পচা ক্মপোস্ট তৈরির ড্রাম।
(বাড়ির লন, খড় বা জঙল কাটা লতাপাতা ও গৃহশ্হালী আবর্জনা निর্দিষ্টভাবে তৈরি ড্রাম পদ্ধতিতে পচিয়ে কমপোস্ট তৈরি করা যায়। এই পদ্ধতিতে ড্ডামে আবর্জনা ও এক্টিভেটেরসহ পানি ছিটাতে হয়। তার এই ড্রাম কাঠের ফ্রেমের উপর বসিয়ে সময়ে সময়ে ঘুরাতে হয়। ড্রাম পদ্ধতিতে মাস খানেকের মধ্যে উন্নতমানের কমপোস্ট তৈরি হয়। অফিস, লনসম্পন্ন বাড়ি ও অন্যান্য প্রতিষ্ঠানে এই পদ্ধতিতত কমপোস্ট তৈরি করা যায়।)

কমপোস্ট জৈব সারের উপকারিতা

জৈব সার মাটি ও ফসলের জন্য খুবই উপকারী। তবে অনেক সময় জৈব সার ভালভাবে পচিয়ে বা কমপোস্ট না করে প্রয়োগ করনে অসুবিধা দেখা দিতে পারে। যেমন-

ক. কমপোস্ট না করা ছড়িয়ে থাকা কাঁচা গোবর অস্বাস্থ্যকর অবস্থা সৃষ্টি করে। এগুল্লোর নাড়াচাড়ায় কৃষিসহ নানা বীজাণু ছড়ার্ত পারে। কাঁচা গোবরে মাটির ক্ষতি হয়ে গাছ বিবর্ণ হয়ে যেতে পারে।
খ. কমপোস্ট না করা কাঁচা গোবর আয়তনে বেশি। কমপোস্ট তৈরির মাধ্যমে ১০ কেজি গোবরকে) কেজি কমপোস্ট গুঁড়ায় পরিণত করা যায়।

গ. খৈল, হাড়ের গুঁড়া ও শিং গুঁড়াজাতীয় জৈব সার মাটিতে পচতে অনেক সময় লাগে। তাই উপস্থিত ফসল বা গাছ এসব কাঁচা জৈব সার থেকে উপকার কম পায়। তাই এসব জৈব সার কমপোস্টে মিশিয়ে ব্যবহার করলে এদের কার্যকারিতা বাড়ে।
ঘ. ছাঁস-মুরগির পায়খানা, ছাগলের পায়খানা একইভাবে দুর্গন্ধযুক্ত এবং đাঁঝালো। এদদর সরাসরি ব্যবহারে গাছ ক্ষতিগ্রস্ত হয়। অথচ করাতের эুঁড়ার লিটারসছ এসব সার কমপোস্টে মিশ্রভাবে ব্যবহার করল্ে গাছে দ্রুত সুফল দেখা লেয়।
ঙ. অধিকাংশ রাসায়নিক সার সরাসরি মাটিতে ব্যবহার না করে কমপোস্টের মাধ্যম ব্যবহার করলে এদের কার্যকারিতা বাড়ে।
চ. চুন, বেসিক স্ন্যাগ, তামাক ও ঝিনুক উচ্ছিষ্ট প্রভৃতিও কমপোস্টে ব্যবহার করে উন্নতমানের জৈব সারে পরিণত করা যায়।

৫। সার প্রয়োগের মূলনীতি

ফসলের জমিতে সার প্রয়োগ করে অধিক ফলন পেতে হলে কতকগুলো নিয়মবিধি পালন করা দরকার। জৈব ও রাসায়নিক সার প্রয়োগের প্রধান প্রধান নিয়মনীতি নিচে উাল্লে করা হলো ।
ক) জৈব সার প্রয়়াগের ক্ষেত্র
নিম্নিরাপ অবস্থার জমিতে সন্তোষজনন ফসল পেতে হলেে জৈব সার প্রয়োগ আবশ্যক
১. মাটিতে উপস্থিত জৈব পদার্থের পরিমাণ প্রয়োজনের তুলনায় কম থাকলে (সর্বনিম্ন ২\%)।
২. মাটির ভৌত গুণাবলী অনুকুল না হলে, ঘনত্ব বেশি হলে এবং সংযুুত বিনষ্ট হয়ে গেলে।
৩. মাটির অণুজৈৈিব ধর্ম উন্নত করতে হলে (বায়ু চলাচল ও জৈবিক কার্যাবলী বৃদ্ধির মাধ্যমে)।
8. মাটি নিবিড়ভাবে চাষ করা হলে।

খ) রাসায়নিক সার প্রয়াগের মূলনীতি

রাসায়নিক সার প্রয়োগের প্রধান প্রধান নীতিসমূহ নিম্নুরেে উল্লেখ করা যায়-
১. মৃত্তিকা পরীক্ষা, গ্রীন হাউস এবং মঠ পরীক্ষা দ্বারা পুষ্টি উপাদানের ঘাটতি নির্ণয়।
২. উদ্ডিদ বৃদ্ধির বিভিন্ন পর্যায়ে পুষ্টি উপাদানের ঘাটতি পরিপৃরণ করতে হলে ঘাটতির তীব্রতা মোতাবেক সার প্রয়োগের পরিমাণ ও সময় নির্ধারণ করা প্রয়োজন
৩. বিভিন্ন ফসলের পুষ্টি উপাদানের চাহিদা ভিন্ন প্রকৃতির। তাই ফসলের পুষ্টি উপাদান চাহিদা ও ফলন মাত্রা অনুসারে সারের পরিমাণ ও প্রকার নির্ধারণ করতে হয়।
8. মাটিতে প্রয়োগের পর রাসায়নিক বিক্রিয়ার মাধ্যমে পুষ্টি উপাদানের অপচয় বা সং্যোজন ঘটলে সারের কার্যকারিতা কমে যেতে পারে। তাই মাটির গঠন দ্রব্য অনুসারে সার প্রয়োগের পদ্ধতি নির্ধারণ করা দরকার।
৫. খাদ্য প্রাপ্যতার অনুকৃন সর্বোত্তম মাত্রায় মাটির অম্লমমন বিদ্যমান রাখতে পারলে সারের কার্যকারিতা বাড়ে।
৬. মাটিতে পরিমিত আর্দ্রতার উপস্থিতি সারের কার্यকারিতা বাড়ায়। তাই সার প্রয়োগের সময় মাটির আর্দ্রততা বা উপস্থিতি পানির পরিমাণ বা আন্তঃচর্যাপদ্ধতি বিবেচনা করতে रয়।
৭. মৃত্তিকা সংরক্ষণের উপযুক্ত ব্যবস্থাপনা ও সেচ নিকাশের নিষয়তা সারের কার্যকারিতা বাড়ায় বলে সং্রক্ষণ ও সেচ-নিকাশ সজ্ভাব্যতার উপর সার প্রয়োগ বিষয় নির্ভর করে।
৮. সারের মূল্য, প্রয়োগ ব্যয় এবং উৎপাদিত ফলনের মৃল্য বিবেচনা করতে হয়। প্রাকৃতিক বিপর্যয়ের কারণে ফসল বিনষ্ট হওয়ার আশংকার বিষয়টিও খুব গুরুত্ব্বপূর্ণ।
৯. মাটির রাসায়নিক গুণাবলীতে সারের উপস্থিতি ও অবশিষ্ট প্রভাব বিবেচনা কররে इয়।
১০. সার প্রয়োগের সুফল অন্যান্য ফসল পরিির্যা যেমন-আগাছা দমন, রোগ-পোকা দমন; পরিচর্যা, ইত্যাদির উপরও নির্ডর করে সেগুল্লার সষ্ভাব্যতাও বিবেচনা করতে इয়।

উচ্চ ফলন প্রাপ্তির নির্দেশনা

এই অধ্যায়ে সার ব্যবহারের জন্য একটি গড় পরিমাণ এবং এতদসংক্রান্ত নির্দিশনা প্রদান করা হয়েছে। মধ্যম উর্বর জমিতে এই সার প্রয়োগ করে কমপক্ষে মধ্যম মাত্রার ফলন পাওয়া যেতে পারে। তবে উচ্চ ফল্নন পেতে হলে সার প্রয়োগের কতগুলো নিয়মনীতি মেনে চলতে হয়। এখানে ফসলের জমিতে সার প্রয়োগের সাধারণ নীতিসমূহ উল্লেখ করা হলো।
১. ফসলের জমিতে জৈব ও রাসায়নিক উভয় প্রকার সার ব্যবহর করা দরকার।
২. প্রতি শতক জমিতে ২০ কেজি জৈব সার ব্যবशার করলে অনুম্মেদিত রাসায়নিক সার এক-তৃতীয়াংশ কমিয়ে দেওয়া যায়।
৩. জৈব সার শুষ্ফ গুफ़ুঁ অবস্থায় জমি প্রস্তুতের সময় ব্যবহার করতে হয়।
8. লাল বেলে মাটি, পাহাড়ী ও পাদভূমির বেলে মাটিতে পটাশ সারের পরিমাণ দেড় গুণ দিতে হয়।
৫. มাটির নিচে ও কন্দাল ফসলে পটাশ সারের পরিমাণ দেড়গুণ দিতে হয়,
৬. গগ্গাবাহিত প্লাবনভূমি ও সেচ প্রকল্প এলাকায় দন্তা সারের ব্যবহার বেশি প্রয়োজন।
৭. হাওর এলাকার জমি উর্বর হলে সারের পরিমাণ এক-তৃতীয়াংশ কমিয়ে দেওয়া যায়।
৮. দেশী জাতের ক্ষেত্রে সারের পরিমাণ কমিয়ে দিতে হয়।
৯. বেলে বুনটের মাটিতে এমপি সার দুই কিস্তিতে প্রয়োগ করতে হয়।
১০. পূর্ববতী ফসলে টি এস পি, এম পি ও জিপসাম সার অনুমোদিত মাত্রায় প্রয়োগ করা হয়ে থাকলে পরবর্তী ফসলের জন্য উক্ধিখিত সারগুলো অনুমোদিত মাত্রার অর্ধেক প্রয়োগ করা যেতে পারে।
১১. দস্তা সার কোনো ফসলে ব্যবহার করলে পরবর্তী দুই ফসলে ব্যবহার করা দরবার नाই.
১২. সবুজ সার প্রয়োগ করা জমিতত ইউরিয়ার পরিমাণ এক-তৃতীয়াংশ কমানো যায়।

সার সুপারিশ নীতি

কোনো মৃত্তিকা নমুনা ও উদ্রিদ নমুনা পরীক্ম করে এক বা একাধিক পুষ্টি উপাদানের ঘাটতি পাওয়া গেলে তা সার দ্রব্য দ্বারা পরিপুরণ করতে হয়। যে কোনো উর্বর শ্রেণির মাটিতেও নানা কারণে ফসল বিশেষে বা ঋতুভিত্তিতে পুষ্টি উপাদানের ঘাটতি থাকতে পারে। উপযুক্ত রাসায়নিক পরীক্ষার মাধ্যমে এ ধরনের পুট্টি উপাদানের ঘাটতি সমস্যার সমাধান করা যায়। যে কোনো ফস্সলের মোট পরিশোষিত উপাদান প্রধান দুপ্রকার উৎসের সরবরাহকৃত পরিমাণের সমষ্টির সমান অর্থাৎ কোনো ফসলের মোট উপাদান-
ফসলের মোট মৃত্তিকাস্থ প্রাপনীয় সারের মাধ্যমে

$$
\begin{array}{lll}
\binom{\downarrow}{\uparrow} & = & \binom{\downarrow}{\uparrow} \\
\text { উপাদান } & \left.+\begin{array}{l}
\downarrow \\
\uparrow
\end{array}\right) \\
\text { উभाদান }
\end{array}
$$

প্রয়াজনীয়তত জানা থাকলে এবং ম্ত্তিকাস্থ প্রাপনীয় উপাদানের পরিমাণ জানা থাকলে সারের পরিমাণ নির্ধারণ করা সহজ হয়।
ধান, গম, পাট, আখ, শাব-সবজি, চা, আনারস, ফল প্রভৃতি ফসলের পুষ্টি চাহিদা ভিন্ন ভিন্ন। কতকগুলো ফসলের প্রতি টন উৎপাদনের জন্য কতটুকু পুষ্টির দরকার হয় তা নিচের সারণিতে উপস্থাপিত হলো (উদাহরণ হিসেবে)।

সারণি ২৫: প্রতি টন উৎপাদলে পুষ্টি চাহিদা (কেজি/হেক্টের)

एসल	নাইট্রোজেন	ফসফরাস	পটাশিয়াম	সালফার	দস্তা
ধান	১br	\bigcirc	२8	२	0.088
গম	২৮-	১২	२®	8	-
পাট (শুকনো) आँশ	งง	১৫	bo	3.6-	-
आখ	0.b	0. ${ }^{\text {b }}$	২.७	0.8	-

यদি কোনো কৃষক হেক্টর প্রতি ৫ টন ধান ফলাতে চান তাহলে ছকে উল্লেখিত তথ্যের সাহায্যে হিসাব করতে হয়। যেমন-

৫ টনের জন্য নাইট্রোজ্রেন পুষ্টি ৫ \times ৷৮=৯০ কেজি
ধরা যাক, মাটিতে নাইট্রোজেনের পরিমাণ=8৮ কেজি
সুতরাং, ৯০-৪৮-8২ কেজি নাইট্রেজেন প্রয়াগ করতে হয়। ,
সারের কার্যকারিতা ৩৫\% হিসাবে ৪২×২.৮৫=১১৯.৭ কেজি (১০০ +৩৫=২.৮৫)
ইউরিয়া পরিমাণ ১১৯.৭×২.১৭=২৫৯.৭ =২৬০ কেজি
($300 \div 8 ৬=2 . ゝ 9)$
সারণি ২৬ : ধানের জমিতে মাটিতে বিদ্যমান পুট্টি বাদে সারের চাহিদার হিসাব (উৎপাদন মাত্রা : ৫ টন / হেক্টর)

মাটিতে পুষ্টির মাত্রা	মাটিতে পুট্টির পরিমাণ (কেজি/ হেক্টর)	গাছের গ্রহণযোগ্য পুষ্টির পরিমাণ (কেজি/হেক্টর)	উৎ্পাদন মাত্রার জন্য পোট প্টির প্যোজনীয়তা (কেজি/হেক্টর)	উৎপাদন মাত্রার জন্য অতিরিক্ত পুটির প্রয়োজনীয় (কেজি/হেক্টুর)	সার চাহিদা (কেজি/হেক্টর)
নাইট্রোজেন 0.06%	$\checkmark 8$	8 b	৯o	8২	১২০(২৬০ ক)
ফসফরাস ১০ পিপিএম	২०	so	১®	\mathbb{Q}	২৫ (১২৫ খ)
পটাশিয়াম $0 . ১ 8$ মি: ই: / 200 গ্রাম	$2>9$	৫৯	200	8)	৮- (১৬8 গ)
সালফার b পি পি এম	$১ ৬$	8	20		২8 (১৩৩গ)
দস্তা ২ পিপিএম	8	0.8	0.20	-	

ক-ইউরিয়া, খ- টি এস পি, গ-এম পি, ঘ-জিপসাম
উৎস :পরিমিত পুষ্টি উপাদানের সাহা্যে উন্নত ফসল, বি আর সি, ঢাক।
উপররাক্ত ফসল সূত্র থেকে বলা যায় সকল জলবায়ু, ফসল, মৃত্তিকা ও কৃযকের জন্য একই সার সুপারিশ প্রদান করা যায় না। সার সুপারিশ প্রদানের জন্য সকল উপাদানের বিবেচনা ও সুসমন্নয় প্রয়োজন। ফসলের ফলন উপাদানের সমন্নয় ও ফলন লক্ক্যের ভিত্তিতে প্রধান ছয় প্রকার সার সুপারিশ পৃথক করা যায়, যেমন-

১. সর্ব্বাচ্চ ফলনের লক্ষ্যে সার সুপারিশ

এ ধরনের সার সুপারিশের উদ্দেশ্য হয় সকল্ল পুষ্টি উপাদান মোটামুটি সর্বোত্তম মাত্রায় সবররাহ। সম্পদের সীমাবদ্ধতা না থাকল্লে প্রগতিশীল কৃষকের জন্য এই সুপারিশ প্রদান করা যায়। এই সুপারিশের উদ্দেশ্য হচ্চে সর্বোচ্চ ফল্নন প্রাপ্তি। সর্বোচ্চ ফলন প্রাপ্তির জন্য ফসলে সর্বোচ্চ ব্যবস্থাপনা কার্যাবলীর (best management practices) প্রতিপালন নিশিত কররত হয়।

২. ফলন লক্ষ্যে সার সুপারিশ

নির্দিষ্ট ফসলের জন্য সার (অবশিষ্ট প্রভাব ব্যতিরেকে) সুপারিশ। সীমাবদ্ধতাসম্পন্ন কৃষক বা বর্গা জমি বা মাধ্যম উৎপাদনশীল জমির জনা এ ধরনের সুপারিশ প্রদান করা যায়।

৩. ফসল বিন্যাসের জন্য সার সুপারিশ

ফসল বিন্যাসের জন্য সার সুপারিশ প্রদান কর্লে সারের পরিমাণ বাড়ানো যায় কারণ এতে সারের অবশিষ্ট প্রভাব বিবেচনা করা হয়। যেমন গোল আলুতে বেশি পরিমাণ সার দিলে পরবর্তী ফসল (যেমন- ধান) এই সারের সুফন পারে। এই সুপারিশমালায় সারের অবশিষ্ট প্রভাব ও কার্যকারিতা বিবেচনা করা হয়।
8. সংরক্ষণী (Maintenance) সার প্রয়োগ

কোন্না জমিতে ১ নং প্রকার অনুরূপ সর্বোত্তম মাত্রায় সার দিলে তা পরবর্তী সময়ে সংরক্ষণীয় সার প্রয়োগ করে যাওয়া। এর মূলনীতি হয় প্রতি বৎসর যে পরিমাণ উপাদান ফসল পরিশোষণ করে বা অপচয়িত হয় তা পরিপূরণ করে যাওয়া।

৫. সর্বনিম্ম মাত্রায় সার প্রয়োগ

ভরণপোষ্িক (subsistance) কৃষকের জন্য সীমাবদ্ধতার আলোকে কেবল উপস্থিত ফসল থেকে সন্তোষজনক ফলন প্রাপ্তির জন্য সর্বনিম্ন মাত্রায় সার প্রয়োগের জন্য সুপারিশ প্রদান।
৬. সার প্রয়োগ না করা

অন্যন্ত ঝুঁকিপূর্ণ জমিতে (ফসল বিনষ্টের জন্য বা ফলন কম হ্ওয়ার) সার সুপারিশ প্রদান না করাই ঊক্তম।

সার সুপারিশ প্রদানের সময় বিবেচ্য প্রধান বিষয়

ফসলের ফলন সূত্রভিত্তিক সুপারিশসমূহের আলোকে উল্লেখ্য করা যায় যে সার সুপারিশ প্রদানের সময় আবশ্যকভাবে নিম্নরূপ চারটটি বিষয় বিবেচনা করতে হয়, যেমন-
১. ফসল ও জলবায়ু-এলাকায় জন্মানো ফসল ও জলবায়ু সম্পর্কে জ্ঞান।
২. মৃত্তিকা বিল্লেষণ ও ব্যাখ্যা-মৃত্তিকার রাসায়নিক পরীক্কা ও ফলাফলের ব্যাথ্যা।
৩. ফসলের উপাদান প্রল্যাজনীয়ত- জন্মানো ফসলের প্রকার ও পরিমাগত প্রไ্যেজনীয়ত।
8. কৃষকের সম্পদ ও দক্ষण-ফসলের চাষকারী ক্যষকের উপস্থিত সম্পদ সীমাবদ্দज ও ব্যবস্शাপনা ক্ষমত।

সার সুপারিশ প্রণয়ন্নর পদ্ধতি

১. মাঠ পরীষ্ষা পদ্ধতি

মাঠে ফসলের জমিতে বিভিন্ন পরিমাণ ও অনুপাতে সার প্রয়োগ করে এর ফলাফললের
 ফসলতিত্তিক গবেবণাগারসমূহ এই পদ্ধতিতে কাজ করে থারে।

২. কৃত্রিম ছামবোল্ড মৃত্কিকা পরীীকা পদ্ধতি

বাং্নাদেশ কৃষি বিশ্ববিদ্যালয়়র য়ত্তিকাবিজ্ঞান বিভাগ ও জার্মানির অনুদানে পরিচালিত ও উছ্ভাবিত কৃষি হামবোল্ড মৃত্তিকা পরীষ্দ কিটের সাহাঘ্যে এবং মৃত্তিকা ও উড্ডিদ কোষ কना পরীক্ষ করে সার্রে পরিমা সम্পকে ধারণা করা হয়। এটি একটি গুণগত দ্রুত পদ্ধতি। ফলে সঠিকত, মান ও ব্যাপকতা সীমিত।

৩. কৃষি গবেষণা বা বারি (BARI) পদ্ধতি

 ইত্যাদির সমন্নয়ে প্রাথমিকভাবে ভূমিকা উর্বরত বিষয়ে ধারণা করা হয়। তারপর ফলনের লক্ষ্যমাত্রার ভিত্তিতে একটি সাধারীীক্ত সার মাত্রা প্রদানের সুপারিশ করা হয়।
এই পদ্ধতির প্রধান প্রধান পর্রায় হচ্ছে।
১. มৃত্কিকার বিস্তারিত পরীী্শ্ ও ফলাফলन নির্ণ্য।
२. গ্রীন হউজ্ে ফসল বৃদ্জিতে সার্রে কার্यলারিতা নির্ণয়।
-. মাঠে সারের প্রকার/ পরিমাণ বিষয়ক পরীশ্ষা এবং মৃত্তিকা পরীক্ষা ফলাফলের সাথে
 ফলাফन ও ফসলनর ফলনে বৃদ্ধি সাড়া দান তীব্রত নির্ণ্য করে মাটির উর্বরত ও সারের পরিমাণ সস্পকে ধারণা কয়া হয় তাকে মৃত্তিকা পরীক্রা ফসল সাড়া সম্পর্ক পর্য<েক্ষন পদ্ধতি বলে (STCRCS)।.

সার সুপার্রিশ প্রকাশের একক

2. সরলল সারের মূল ওজন পদ্ধতি-বেমন ইউরিয়া ১oo কেজি/হেক্টের।
২. ব্যীগিক সারের একক পদ্বতি যেমন ১২০০ কেজ্জ 'X" নামক ব্যীগিক সার / হেক্টে।
-. উপাদান পদ্ধতি যেমন ১oo কেজি N/ হেৃ্ধর।
3. অनুপাত পদ্ধতি যেমন হু১১২ N-P-K,X কেজি N/ হেৃ্টে।

৬। মৃত্তিকা পরীক্ষা

প্রায় দেড়শত বৎসর পৃর্বে বিজ্ঞানী ডোবেনি মাটিকে হাইড্রোক্সোরিক এসিডের সাহায্যে পরীক্মা করে ফসফেট সার প্রয়োগ করেছিলেন। অবশ্য এরপর ১৮৯৪ সালে বানার্ড ডায়ার মৃত্তিকা পরীক্ষায় পরিপৃর্ণ পদ্ধতি উদ্রাবনে সফল হয়েছিলো। উপাদানের মোট ও প্রাপনীয় পরিমাণ নিধ্ধারণের পর তার মন্তব্য ছিল সাইট্রিক এসিডের ঊ দ্রবণ মৃত্তিকা নির্যাস ব্যবহার করে ফসফেটের পরিমাণ 0.03\% পাওয়া গেলে সেখানে ফসফেট সার প্রয়োগ করে লাভবান হওয়া যাবে। এরপর মৃত্তিকা পরীক্ষা পদ্ধতির প্রভূত উন্নয়ন সাধিত হয়েছে। বর্তমানে বাংলাদেশ্ল কৃষি গবেষণা সিস্টেম্ম উন্নত ও দ্রুত পদ্ধতিতে মাটি পরীীক্ষা করে সার সুপারিশ বিষয়ক নির্দেশনা দান করা হচ্ছে। এ কাজের জন্য প্রতিটি গবেষণা ইনম্টিটিউটে এবং আঞ্চলিক মৃত্তিকা পরীক্ষগারে মৃত্তিকা পরীক্ষার সুযোগ-সুবিধা সৃষ্টি করা হয়েছে এবং দিনে দিনে তা উন্নততর করা হচ্ছে।

মৃত্তিকা পরীক্ষাপদ্ধতি

মৃত্তিকা পরীক্ষা কাজ শুরু থেকে সার সুপারিশমালা প্রদান পর্যন্ত করণীয় কার্যাবলীকে ৪টি পর্যায়ে ভাগ করা যায়, যথা-
১. মৃত্তিকা নমুনা সগ্র্রহ।
২. মৃত্তিকা পরীক্ষা করা।
৩. মৃত্তিকা পরীক্ষা ফলাফল বিশ্লেষণ।
8. সার সুপারিশ প্রদান।

มุত্তিকা নমুনা সগ্গ্রহ

মাটির রাসায়নিক পরীক্ষায় প্রধান উদ্দেশ্য হচ্ছে ফসল মোসুম্মে সঠিক পরিমণে ও অনুপাত পুষ্টি ঊপাদান সরববাহের প্রচ্ছন্ন উৎপাদন উপযুক্তুতা নির্ণয় করা। তাই পরীকার জন্য সংগৃইীত মাটির গুণাবলী সেই এলাকার মাটির প্রতিনিধিত্বশীল হয়। অধিকাংশ মাঠ ফসলের জন্য ২ থেকে ৩ বৎসর পর পর মাটি পরীক্ষা করা উচিৎ। নিবিড় ভাবে ব্যবহৃত জমি বা গ্রীন হাউজের মাটি বাৎসরিকভাবে বিষ্লেষণ প্রয়োজন। সকল সময় একই মৌসুহে একই স্शান থেকে নমুনা সংগ্রহহ করা ভাল। মাটির বন্মুরতা বুনট, পূর্বফসল, নিকাশ বর্ণ, ইত্যাদি বিবেচনা না করে 8 থেবে ৬ হেক্টের জমির জন্য ২০টি উপনমুনা সং্গহ করা একটি কস্প্পোজিট নমুনা তৈরি করতে হয়।
(কেনো সংগৃইীত নমুনা মাটি গবেযণাগারে (০-১৫ সেমি. গভীরতায় নমুনা) প্রেরণের সময় অন্তত নিচে বিষয়ের উল্লেখ থাকা বাঞ্জুনীয়-
১. জন্মানো পূর্ব-ফসল (জাত্সহ),
২. জন্মিতব্য ফসলের নাম ও জাত,
৩. কাজ্ষিক্ষত ফলন নক্ষ্য,
8. পূর্বে চুন প্রয়োগের বর্ণনা,

৫. প্রয়োগকৃত জৈব সারের বর্ণনা,
৬. চাষের গভীরতা,
৭. সেচ দেওয়া হয় কি-না,
৮. মৃত্তিকা সিরিজের নাম ও ব্যবস্থাপনা,
৯. নিকাশ পরিস্থিতি,
১০. অন্যান্য উষ্লেথযোগ্য বিষয়।

মৃত্তিকা পরীক্ষার কৌশল

১. মাটির অম্লত্ব পরীক্ষা,
১. লডিবন্ড বর্ণ পদ্ধতি : বিষ্ঞানী জোনস (১৯৭৩) অনুসারে মাটির অম্লত্ব পরীক্ষা পদ্ধতি হচ্ছে ইলেকট্রোড পদ্ধতি।
২. পটাশিয়াম, ক্যালসিয়াম ও ম্যাগনেশিয়াম নির্ধারণ প্রাপ্য পরিমাণ নির্ধারণ করা হয়।
(ক) প্রশম 3.0 সাধারণ এমোনিয়াম এসিটেট, (খ) $0.0 ৫$ সাধারণ হাইড্রোক্লোরিক এসিড + ০.০২৫ সালফিউরিক এসিড (ডাবল এসিড), গ) মরগান দ্রবণ-সোডিয়াম এসিটেট ১.৪ সাধারণ + এসিটিক এসিড অম্লমান ৪.৮ এ বাফারকৃত।
৩. ফসফরাস

ক) 0.0 ২৫ হাইড্রোক্লোরিক এসিড + 0.00 এমোনিয়াম ক্লোরাইড ब্রে -ফসফরাস), খ) $0.0 ৫$ সাধারণ ছাইড্রোক্লোরিক এসিড + 0.0২৫ সাধারণ সালফিউরিক এসিড, গ) ০.৫ মোলার সোডিয়াম বাই কার্বনেট (অলসেন),
8. গৌণ উপাদান-পারমাণবিক পরিশোষণ বর্ণমিতি পদ্ধতি।

१। উঙ্ডিদ কোষকনা পরীক্ষা

دt-80 সালে লিবিগ কর্তৃক উদ্ভাবনের পর সার চাহিদা নিরপপণের জন্য উদ্ভিদ কোষকলা পরীক্ষ পদ্ধতির ব্যাপক উন্নয়ন হয়েছে। কোষকলা পরীক্ষা প্রধানত নিম্নরপ-
১. মোট উল্রিদ বিশ্লেষণ,
২. সবুজ কলা পরীক্ষা,
৩. চাক্ষুষ অপুষ্টি লক্ষণ পর্যবেক্ষণ।

কোনো উদ্ডিদে পুষ্টি উপাদানসমৃহের মাত্রা ঘাটতিপূর্ণ বা পর্যাপ্ত কি-না তা জনার জন্য উদ্ভিদের মোট বিশ্লেষণ ও সবুজ কলা পরীক্ষা বেশ মূল্যবান। মাটি পরীক্ষা ও চাক্ষুষ অপুষ্টি লক্ষণ সহযোগে এসব পরীক্ষা উদ্ডিদ বৃদ্ধির অধিকাংশ শারীরব্ত্তীয় ও সার সংক্রান্ত সমস্যার সমাধান দিতে পারে। পরীক্ষার জন্য নমুনা সংগ্রহু, উদ্ভিদের বিভিন্ন অংশে বা বিভিন্ন বৃদ্ধি পর্যায়ে নমুনা সংগ্রুহ, ফসল পরিচর্যায় পৃর্ব ইতিহাস পর্যালোচনার ব্যাপারে সুনির্দিষ্ট পদ্ধতি অবলন্মন করল্লে সার সুপারিশের কার্যকারিতা বৃদ্ধি পায়।

সবুজ কলা পরীক্ষা কিছ্ঠুটা দ্রুত ধরনের পদ্ধতি এবং অর্ধ সংখ্যাতাত্ত্বিক। আজকাল ইলেকট্রোন মাইক্রোপ্রোব রঞ্জন-রশ্মি বিশ্লেষক যস্ত্র দ্বারা অত্যন্ত সঠিকতার সাথে এবং যথেষ্ট কম সময়ে উদ্ডিদ বিশ্লেষণ করা সম্ভব হচ্ছে। এসব ফলাফন্न তারপর কম্পিউটারের সাহায্যে বিশ্লেষণ করে ভূমি উর্বরতার মান সার চাহিদা বিষয়ে সিদ্ধান্ত নেওয়া হয়।
সারণি ২৭ : বিভিন্ন ফসলের পুষ্টি উপাদানের পর্যাপ্ততা মাত্রা (উদাহরণ হিসেবে)।

ঊ®াদান"	গমের ফুল্ল আসার আগে উপরের পাতা	সবজি উপ:্রর পূর্ণ বদ্ধিপ্রাপ্তু পাতা	গোলআলুর প্ণর্ণতাপ্রাপ্ত পাতার बোটা
নাইট্রোজেন	২.৫৯-৩.00		২.৫-8.0
ফসফরাস	০.২১-৩.৫	-. ২৫-0.৮	-.১৮-0.২২
পটাশিয়াম	১.区0-৩.0	২০-৯.০	৬.০-৯.০
ক্যালসিয়াম	০.২১-১.0	-.৩৫-২.0	0.0-0.৫
ম্যাগনেশিয়াম	0.২১-১.0	$0.2 ৫-3.0$	0.১৭-०.২২
জিভ্ক (পিপিএম)	২১-90	00-১00	-0-300

উৎসঃ ভিতস সহকর্মী (১৯৯৩)
সারণি ২৭ : অনুসারে দেখা যায় যে গম, সবজি ও গোলআলুর পাতায় নাইট্রোজেনের পরিমাণ ২৫\% হলে সার প্রয়োগ করতে হয়। অপরদিকে পটাশিয়ামের সজ্কটকালীন পরিমাণ যথাক্রম্মে ০.২\% এবং ১.৫\%।

৮। নাইট্রোজ্জেন সার সুপারিশ

প্রত্যেকটি উপাদানের নিজস্ব রাসায়নিক বৈশিষ্ট্য অনুসারে সুপারিশদান পদ্ধতিতে ও কিছু কিছু পার্থক্য পরিলক্ষিত হয়, যেমন-

নাইট্রোজেন -মৃত্তিকা ব্যবস্থাপনা, আর্দ্রতা, অভীষ্ট ফলন, জৈব পদার্থ।
ফসফরাস-মৃত্তিকা খনিজ (ফসফেট), অম্লমান, ফলনের উদ্লেশ্য।
পটাশিয়াম-প্রাপনীয় বা ক্ষয়ীভূত খনিজ, ফস্লের প্রকৃতি।
সারণি ২৮ : ফসল বিন্যাস ও প্রয়োজনীয় নাইট্রোজেন (কেজি/হেক্টর)

উৎস: గৃঃ হুড, ১৯৯১ অবলম্মন্ন

উপরোত্ত সারণি পেকে জানা যায় বে, ভুট্যা চাষের জমিতে পুর্ব ফসল লিগুম থাকলে लেথানে >00 কেজি নাইট্রোেন প্রর্যোগ করতত হয় সেখান পুর্ব ফসল ভুট্রা ও অন্যান্য ফসল (একাধিক ফসল) থাকনে সেখানে প্রায় ৩০০ কেজি নাইট্রেজেন প্রয়োগ কর্তে इए।
নিম্মিলিথিত বিষয়ের ভিত্তিতে নাইট্রাজেন সার সুপারিশ প্রান ক্যতে হয়-
১. মাটির ৬০ সেমি. গভীনতা পর্यন্ত নাইট্টেটের পরিমাণ, বীজ বপন সंময়ে,
২. মাটির সং্রক্কিত আর্দ্রত,
৩. জম্মানা ফস্সলের প্রকার,
8. ফসল মৌসুম্ম সম্ভাব্য বৃষ্টিপাত্র পরিমাণ।

উত্তর অগ্রাজ্যে ৬০ সেমি. গভীরতায় নাইট্টোজেনে পরিমাণ $0-88, ~ ৪ ৫-৮ ৯, ~ ৯ ০-১ ২ ৪, ~$ ১২৫-১৬৬ এবং ১৬৭ + কেজ্রি হেক্টির হলে তাকে উর্বরততর মান হিসাবে যথাক্রম্ম খুবই কম, ম্যমম উচ্চ এবং উচ্চ ধরা হয় (Coop Ext Ser, N. D State univ 1970)।
উদাহরণ ঃ ধরা যাক, কেনো জমিতে হেৃ্ট্র প্রতি $>0,000$ কেজি ভুট্রা উৎপাদন করা হয়।

 (গাড় ১.৫\% হিসাবে) ১০,000 কেজ্জি ফলনে ১৫০ কেজি। অতএব এর মধ্যে মাচ্তিতে ৫০ কেজ্জি থাকলে প্রত্যোগযোগ্য পরিমাণ হয় ১০0 কেজি।

৯। তাপন পদ্ধতি

এই পদ্ধতিতে নির্দিষ উষ্কতায় ১০ ণ্থেক ১৪ দিনব্যাপী মৃত্তিকা নমুনা তাপনের ব্যবস্থ করে তারপর বিমুক্ত বা খনিজায়িত নাইট্রোজেের পরিমাণ নিণ্ণয় করা হয়। ডিনাইট্কিরণের অনুকূন মাট্তি নাইট্টটের চেয়ে তাপন পদ্ধতিতে সারের পরিমাণ নির্ণয় ক্রলে কার্যক্র एनाফল পাওয়া যায়। অবশ্য তাপন পদ্ধতিতে প্রকৃত মাঠ অবস্থ বিদ্যান থাকে না।
নাইট্রাজ্জের উৎস ও প্রাপ্যण : কোনো মাঢিতে একক্কাनীন সময়ে যে পরিমাণ নাইট্রেট বা এমোনিয়াম উপস্থিত থাকে (মৃত্তিকা দ্রবণে) তা লেই ফসলের মোট চাহ্দিার কেবল ऐ\% থেকে ২\% হত পারে। জৈেব পদার্থ থেরক প্রায় ২০\% নাইট্রেজ্জেন পরিশোষিত হতে পারে। অবশ্য হিউমিকৃত জ্বে পার্থ থেবে ফসল প্রায় ৯৫৫ নাইটাজেেন পরিশোষণ করে। সংক্কেপে বলা যায় (কোক, ১৯৮৩):

মৃত্তিক দ্রবণ ১\% থেবে \%\% দ্রতত গুতিতে প্রাপনীয়
বিযোজনলীল জেব পদার্থ ২\% হেকে ২৮\% মধ্যম গতিত্র প্রাপনীয়
হিউমিকৃত জৈবব পদার্থ 80% থেকে ৯৫\% পীর গতিতে প্রাপনীয়
রাসায়নিক সার ২০ থেকে 80% দ্রুত থোক মধ্যম গতিতে প্রাপনীয়।

উদাহরণ : ধরা যাক, কোনো মাটিতে জৈব পদার্থের পরিমাণ ২\% এবং জৈব পদার্থে নাইট্রোজেনের পরিমাণ 0.8\%। এই পরিস্থিতিতে ১৫ সেমি. গভীরতা পর্যন্ত মাটিতে নাইট্রোজেনের পরিমাণ হয়

$$
\begin{aligned}
\text { ২০,00,000× } \begin{aligned}
\frac{2}{300} & =80,000 \text { কেজি জৈব পদার্থ। } \\
& =80,000 \times \frac{8}{30 \times ১ 00}=১ ৬ \text { কেজি নাইট্রোজেন। }
\end{aligned}
\end{aligned}
$$

ঐই জৈব পদার্থের বিযোজন হার ১৫\% হলে (ফসল মৌসুমের গড়) বিযোজিত নাইট্রোজেনের পরিমাণ হয় ১৬০× $\frac{\text { २० }}{300}=$ ৩২ কেজি
সারণি ২৯ : বাংলাদেশের বিভিন্ন মৃত্তিকায় নাইট্রোজেনের পরিমাণ

মৃত্তিকা	নাইট্রেজেন \%
১. পলিমার	0.0২ থেকে 0.0 ৫
২. সোপান এলাকা	0.0৫ থেকে 0.0৯
৩. উত্তর পূর্ব পাহাড়ী এলাকা	0.১০ থেকে ০.১৫
8. ইউর্রিয়া নাইঢোজেনের গড় অপচয়-	ধান জমি 80 থেকে ৯০\% আর্দ্রতা অनিক্চিত শীত ফসল, সবজি ও গম জমি (সেচ) ৩০ থেকে ৫০\% আর্দ্রতা মোটামুটি নিশ্চিত
๔. পাট জমি	80 থেকে ৮০\% আর্র্রতা মধ্যম নিশ্চিত।

উৎস:SRDI, ১৯৯০
সারণি ৩০: মৃত্তিকায় প্রাপ্য ফসফরাস, পটাশিয়াম (কেজি/হেক্টর) ও উর্বরতা মান (হুড, ১৯৭১)

ফসফরাস	উর্বরত্রা মান	পাটাশিয়াম
0 থেকে ১)	খুবই ক্ম	0-৮৯
১২ থেকে ২৩	ক্ম	৯০-১৬心
২৪ থেকে ৩৫	মধ্যম	১৬q-रण
৩৬ থেকে 9	বেশ্রি	20৩-ヘ80
৮-	খুব বশশ	083+

১০। মৃর্ত্রিকার অন্যান্য উপাদান

ক্যালসিয়াম
মাটির অম্লমান ৫.৫ হলে কেলসিয়ামের ঘাটতি দেখা দিতে পারে। মাটিতে ক্যালসিয়ামের পরিমাণ মোট দ্রবণীয় লবণের ১০\% এর কম হলেও ক্যালসসয়ামের ঘাটতি দেখা দেয়।

ম্যাগনেশিয়াম

চুনদ্রব্য হিসেবে কেবল কেলসাইট ব্যবহার কর্লে ম্যাগনেসিয়ামের ঘাটতি দেখা দেয়। হাল্কা বর্ণের (কম হিউমাস ও ম্যাগনেশিয়াম খনিজ্সম্পন্ন) স্থুল বুনটের মাটিতে প্রাপ্য ম্যাগনেশিয়ামের পরিমাণ ৮০ থেকে ৯০ কেজি/হেক্টের এর কম হয় ম্যাগনেশিয়ামের ঘাটতিতে ফলন কমে যায়।

সালফার

কম জৈব পদার্থসম্পন্ন মাটিতে ও স্স্রু বুনটের মাটিতে সালফার দেখা দেয়। মাটিতে সাধারণত ক্যালসিয়াম ফসফেট নির্যাসিত সালফারের পরিমাণ ৭ পিপিএম এর কম হলে সালফার সার প্রয়োগের প্রয়োজন হয়। «র পরিমাণ ১২ পিপি এম হলে সার প্রয়োগ সাড়া পাওয়া যায় না।
সালফার প্রাপ্যতা সূচক (SAL) যুক্তরাক্টের অনেক স্থানে সালফার প্রাপ্যতা সূচকের মাধ্যম সালফার সারের নির্ণয় করা হয়।

সালফার প্রাপ্যতা সূচক = ৬.২ (পাউন্ড সালফেট / একর) + ০.১ (টন জৈব পদার্থ / একর)।
সালফার প্রাপ্যতা সূচক = ৬.০ হলে কম এবং ৬ থেকে ৯ হলে মধ্যম ধরা হয়। প্রয়োগ হার ২২ থেকে ৪৫ কেজি/হেক্টের সালফার।

বোরন

মাটিতে প্রাপ্য বোরনের (উত্তপ্ত, পানি নির্যাসিত) পরিমাণ ১ পিপিএম এর কম হলে খুবই কম, ১ থেকে ৫ হলে স্বাভাবিষ ধরা হয়। পরিমাণ >৫ পিপিএম হলে তা বিষাক্ত হতে পারে। উচ্চ সাড়াদানকরী ফসলের জন্য হেক্ষর প্রতি ১.৭ থেকে 0.8 কেজি উপাদানিক হতে পারে। উচ্চ সাড়াদানকারী ফসলের জন্য হেক্টুর প্রতি ০.৬ থেকে ১.১ কেজি উপাদানিক বোরন প্রয়োগ করা যায়। অঙ্লীয় বেলে মাটিতে অথবা ক্ষারীয় মাটিতে বোরনের বিষাক্ততা দেখা দিতে পারে (স্পর্শকাতর ফসলে)।

কপার

অধিক জৈৈব পদার্থসম্পন্ন মাটিতে কপার ঘটতি দেখা দেয়। খনিজ মাটিতে নিবিড় চাষ ও অধিক হারে নাইট্রাজেন, ফসফরাস ও পটাশিয়াম প্রয়োগ কপারের ঘাটতি পরিলক্ষিত হতত পারে। মাটিতে হাইড্রোক্লোরিক নির্যাসিত উপাদানিক কপারের পরিমাণ く১০ পিপি এম হলে ৬ থেকে ৭ কেজি/হেক্টের এবং ১০ থেকে ২০ পিপি এম হলে ৩ থেকে 8 কেজি/হেক্টর প্রয়োগ করা যায়। কপারের পরিমাণ) ১৬০ পিপি এম হলে বিষাক্ততা দেখা দিতে পারে।

बোহা

ক্ষারীয় মাটিতে প্রায়শ লোহা ঘাটতি দেখা দেয়। লোহ ঘাটতি নির্ণয়়র জন্য মৃত্তিকা পরীক্মা করতে হয়। গাছের পাতায় বাহ্যিক লক্ষণ দেখেও লোহার ঘাটতি সম্পর্কে ধারণা করা যায়।

চতুর্থ অধ্যায় মাঠ ফসলে সার প্রয়োগ

১। মাঠ ফসটল সার প্রড়োগের নীতিমালা

যাটি, ফসল ও সারের শুণাবनীর তিত্তিতে এখানে বিভিন্ন ফসলে ব্যবহারোপ্যোগী সারের পরিমাণ সম্পকেকে নির্দেশনা এবং নিম্ন উর্বর জমির উচ্চ ফলন মাত্রার জন্য সারের গড় পরিমাণ উল্ল্লেখ করা হল্লে। এখান ফসলের মধ্যে রয়েছছ :
কৃষিতা্্কিক ফসল ভেমন-মাঠ ফসল এবং উদ্যানতত্ট্রিক ফসল যেমন-শাক-সবজি, ফল ఆ घूल
সার ব্যবহার নির্দ্শননার মধ্যে মাঠ ফস্সলে এখানে রয়েছে :
দানাজাতীয় ফসল
आশজাতীয় ফসল
ডানজজতীয় ফসল
তেলবীজজাতীয় ফসন।
এস্ব ফসলে সঠিক নিয়মনীতি মেনে সুষমভাবে সার ব্যবহার কর্রলে নিষ্নলিথিত উপকার পাওয়া যেতত পারে :

- एসসলের উৎপাদন বাড়বে
- ফ্সল চাব্বে আয় বাড়ব্র
- সার বিশশে এর কুপ্থভাব থেকে পরিবেশ সুরক্ষ হয়ে।
 উৎপদন বৃদ্ধি এবং পরিষেশের জন্যা উত্অ।

২। মাঠ ফস্সढে সার প্রক্যোগ
উচ্চ ফলনশীল বোরো ধানে সার প্রর্যোগ

সারের নাম	সারের পরিমাণ/শতক
ইউরিয়া	১000 গ্রাম
টিএস়পি	8৫0 গ্রাম
এসপি	৫०० গ্রাম
জিপসাম	৩৫০ গ্রাম
দস্তা সার	$\bigcirc \bigcirc$ গ্রাম

চিত্র >৪: উচ্চফলनনশীল ধান গাছ।
'উচ্চ ফলন প্রাপ্তির জন্য ধাতনর ऊমিতে পর্যাপ্তু নাইৗাজজন সার দিতত হয়। ধানের জমিতে নাইটোজ্ন অপচয় প্রয় ৬৫\% এবং শিকড় অগভীর। এজন্য ইউরিয়ার কিন্তি প্রয়োগ করতত হয়। উচ্চ ফলনশীन ধানে জিপসাম ও দস্তা সারসহ ঘাটতি থাকল্লে বোরন সার (বোরা木্স, সলুবর ইত্যাদি) निর্ধারিত হারর (শত্বে ১০ খে<ক ২০ গ্রাম) প্রায়াগ করতু হয়।:

প্রয়োগ পদ্ধতি

১. এক-তৃতীয়াংশ ইউরিয়া এবং অন্যান্য সকল সার ও জ্বেব সার জমি প্রস্তুতের সময় প্রয়োগ করতে হর্য়।
২. বাকি দুই-ত্তীয়াং্ ইউরিয়ার একভাগ চারা রোপণের $৩ ০$ থেক 80 দিন পর এবং অন্যভাগ ৭০ থেকে ৮০ দিন পর প্রয়োগ কররত হয়ে।

জাত

বিপ্লব, আশা, সুফन, ময়না, बোহিনী, শাইীবললম, আই আর ৮- চান্দিনা, পূর্বাচী, গাজী, হাসি, শাহজালাল, মঙ্গল।

ফলনমাত্রা : ২২ থেকে ২৭ কেজি/শতক
রোপণ দূরত্ব : সারির দূরত্ব ২৫ সেমি. চারার দূরুু ১৫ থেকে ২০ সমি.
রোপণ সময় : জানুয়ারি থেকে ফেবুয়ারি।

উফশী রোপা আমন ও রোপা আউশ ধানে সার প্রয়োগ

সারের নাম	সারের পর়মাণ／শ্ত্
ই্ডরিয়｜	900 গ্রাম
ढिखসপি	－צo 5ld
এমপি．	080 ⿹丁口㇒冋
জিপসাম	र०० গ্রাম
দত্তা সার	00 গ্রlম
গৌ¢ ট্যাদান	পুষ্টি घাটত অনুসার

চিত্র ১৫ ：রোপা আমন ও আiঊশ ধান গাছ।
（উচ্চফল্লনশীল রোপা আমন 3 রোপা আউশ ধানের ফলন 3 সাররর পরিমাণ মূলত সম্পৃরক পানি সেচ দেয়ার সুযোডগর উপর নির্ভর ক্রে। এসব ধাঢন পানি সেচ দানের সুযোগের উপর निর্ভর করে। এসব ধাटन পানি সে প্রাপ্তি বা বৃষ্টির উপর নির্ডর করর ইউরিয়ার কিস্তিসমূহ প্রয়োগ করजে হয়।

প্রয়োগ পদ্ধতি

১. এক-ত্তীয়াংশ ইউরিয়া এবং অন্যান্য সকল সার জমি প্রস্তুতের সময় ব্য়্শ্র করতে হয়।
২. এক-তৃতীয়াং্শ ইউরিয়া চারা রোপণের ২৫ থেকে ৩৫ দিন পর উপরি প্রয়োগ করতে रয়।.
৩. অবশিষ্ট এক-ত্তীয়াংশ ইউরিয়া ৫৫ থেকে ৬৫ দিন পর প্রয়োগ করতে হয়।
8. মাটি কিছুটা উর্বর হলে সকল ইউরিয়াই কিস্তিতে প্রয়োগ করা যায়। এতে চারা রোপণের সপ্তাহখানেক পর ইউরিয়ার প্রথম কিস্তি প্রয়োগ করতে হয়।
জাত : মুক্তা, প্রগতি, ব্রিশাইল, বিপ্লব, চান্দিনা, পূর্বাচী, গাজী, ব্বিবালাম পাজাম।
ফলনমাত্রা : ১৫ থেকে ২০ কেজি/শতক
রোপণ দূরত্ব : সারির দূরত্ব : ২৫ সেমি. চারার দূরত্ব : ১০ থেকে ২০ সেমি.
রোপণ সময় : রোপা আমন : জুলাই থেকে আগস্ট রোপা আউশ : মার্চ থেকে এপ্রিল
কাটার সময় : রোপা আমন : নভেম্বর থেকে ডিসেম্বর রোপা আউশ : জুলাই থেকে আগস্ট
অন্যান্য পরিচর্যা : সম্পূরক সেচ ও ফসল সংরকক্ষণ।
আগাছা দমন ও পানি সেচের সাথে সমন্বয় রেখে ইউরিয়ার কিস্তি প্রয়োগ করতে হয়। টিএসপির বদলে এসএসপি প্রয়োগ করলে এসএসপির পরিমাণ তিন গুণ করতত হয়।

স্থানীয় রোপা জাত্র আউশ ও আমন ধানে সার প্রয়োগ

সারের নাম	সারের পরিমাণ/শতক
ইউরিয়া	৫०0 গ্রাম
जिএসপি	$২ 80$ গ্রাম
এমপি	$২ ৫ ০$ গ্রাম
জিপসাম	$২ 00$ গ্রাম
দস্তা সার	প্রয়োজন
গৌণ উপাদান	প্রয়োজনে

চিত্র ১৬ : স্থানীয় জাতের ধান গাছ
(স্থানীয় জাতের অনুম্মোদিত ও অননুম্যেদিত ধানে সার প্রয়োগ বিষয়টি খুবই তাৎপর্যপূর্ণ। কারণ এসব জাতের ধানের উৎপাদন ক্ষমতা না থাকলে এবং সার দিলে গাছ হেলে পড়ে যায়। তাই এই ধানে ফলন ক্য়া ভিত্তিতে কম পরিমাণ ইউরিয়া, ট্রিসপি ও ফস<েটট দিতে হয়। ধান গাছের বৃদ্ধি অবস্গ পর্যবেক্ষণ করে সেই অনুসারে ইউরিয়ার কিস্তি প্রয়োগের সিদ্ধান্ত নিতে হয়।

প্রয়োগ পদ্ধতি

১. অর্ধেক ইউউরিয়া ও অন্যান্য সবটূকু সার জমি প্রস্তুতের সময় প্রয়োগ করতে হয়।
২. চারা রোপপের ০ থেকে 80 দিন পর বাকি ইউরিয়া ঊপরিপ্রয়োগ করতে হহ়।

জাত
: আউশ, রোপা আমন ও বোরো ধানে স্থানীয় অনুম্মাদিত জাত আউশ - কটকন্তারা, হাসিকলসী, ধারিয়াল
রোপা আমন - লতিশইল, নাইজারশাইল, পাজাম বোরো - টেপি, খৈয়া বোরো, হবিগঞ্জ
ফলনমাত্রা : ১২ থেকে১৫কেক্রি শ শতক
রোপণ দূরত্ব : সারির দূরত্ব : ১৫ থেকে ২৫ সেমি.

চারার দূরত্ব : ১০ থেকে ২০ সেমি.
রোপণ সময় : আউশ: মার্চ থেকে এপ্রিল
রোপা আমন : আগস্ট থেকে সেপ্টেম্বর
কাটার সময় : আউশ: জুন থেকে জুলাই
রোপা আমন : নভেম্বর থেকে ডিসেম্বর
পরিচর্যা : স্বাডাবিক পরিচর্যা ও ফসল সংরক্ষণ সম্ভব হলে বা খরার সময় স্বম্মপ ব্যয় সুযোগ থাকলে সম্পূরক সেচ।

ধানের বীজতলায় সার প্রয়োগ

ফলनশীল জাত : প্রতি শতক বীজতলার (80 বর্গমিটার) জন্য

সারের নাম	সারের পরিমাণ/বীজতলা
জৈব সার	২০ কেজি
ইউরিয়া	$১ 00$ গ্গাম
টিএসপি	৫০ গ্রাম
এম পি	৫০ গ্রাম
ছাই	২ কেজি

দেশীয় জাত

সারের নাম	সারের পরিমাণ গ্রাম/বীজতলা
জৈব সার	১৫ কেজি
ইউরিয়া	90 গ্রাম
টিএসপি	$৩ ০$ গ্রাম
এমপি	$৩ ০$ গ্রাম
ছাই	২ কেজি

প্রয়োগ পদ্ধতি

১. সকল সার জমি প্রস্তুতের সময় প্রয়োগ করতে হ্য।
২. বীজ বোনার পর ছাই ছিটিয়ে দিতে হয়।
৩. কোনো সময় নাইআাজেনের অভাবে চারাগাছ হলদে হয়ে যেতে থাকলে প্রতি শতকে আরো ৫০ থেকে ৬০ গ্রাম ইউরিয়া ছিটিয়ে দিতে ছয়।
8. কোনোখানে ৫০ থেকে ৬০ গ্রাম জিপসাম প্রয়োগের প্রয়োজন হতে পারে।

ফলন : এক শতক: বীজতলায় উৎপাদিত চারা দিয়ে অন্তত ২০ শতক জমি রোপণ করা যায়।
সময় : চারা রোপণের নির্ধারিত সময়ের ৩৫ থেকে ৫০ দিন আগেই বীজতলার আয়োজন করতত হয়।
পরিচর্যা : পানিসেচ ও প্রয়াজন হলল ফস্সল সংরক্ষণ।

প্রস্থ 8 মিটার

গমে সার প্রয়োগ

সারের নাম	সারের পরিমাণ/শতক
ইউরিয়া	৯০০ গ্রাম.
টিএসপি	৫00 গ্রাম
এমপি	800 গ্রাম
জিপসাম	৩৫0 গ্রাম
দস্তা সার	৫০ গ্রাম
বোরন সার	ইতিপূর্ব দানা চিটি হয়ে থাকলে সেই অনুসারে

- 局 ১৮: গম গাছ
(গম গাছছর শিকড় অগভীর, গুচ্ছমূল। তাই জমি চায্যে সময় মূল সার মাটির সশ্থে মিশিয়ে দিতে হয়। মুকুট শিকড় উৎপাদলের সেচ দিয়ে ইউরিয়ার কিস্তি প্রয়োগ কর়লে কুশি উৎপাদন বাড়ে।
 বোরাক্স প্রয়োগ করতে হয়!

প্রয়োগ পদ্ধাতি

১. এক-তৃতীয়াংশ ইউরিয়া ও অন্যান্য সকল সার জমি প্রস্তুতের সময় প্রয়োগ করতত कऱ़।
২. বাকি ইউরিয়া দুই ভাগ করে বীজ বপনের ২৫ $~ ৫ ০ ~ দ ি ন ~ প র ~ দ ু ব া র ে ~ প ্ র য ় ে া গ ~$ করতে হয়ে।
৩. সেচ* সুবিধা না থাকলে সকল সার একবারেও প্রয়োগ কর্া যায় অবে এতে ফলন কিছুটা কম হয়।

জাত : কাঞ্চन, বলাকা, আকবর, आঘ্রাণী
ফলনমাত্রা : ১৫ থেকে২০ কেজি/শতক
রোপণ দূরত্ব : সারির দূরত্ব ১৫ থেকে ২০ সেমি. চারার দূরত্ব ৫ থেকে ৮ সেমি.
বীজ হার : ৫00 গ্রাম/শ্তক
বীজ বপন সময় : নডেম্বর থেকে ডিসেম্বর
ফসল কাটার সময় : মার্চ থেকে এপ্রিল
পরিচর্যা : সেচ, আগাছা দমন ও ফসল সংরক্ষণ, ইँদুর দমন

বার্লির জমিতে সার প্রয়োগ

প্রয়াগ পদ্ধাত

গমের অনুরূপ, তবে সেচ সুব্বিধা না থাকলে সকল সার জমি প্রস্তুতের সময় দিয়ে দেওয়াই जाল।

জাত	বারি বাল্লি বারি বাল্লি - ২
एलनমাত্র\|	৮ থেকে ১২ কেজ্রি/শতক
রোপণ দূরত্ব	সারির দূরত্ব : ২০ থেকে ৩০ সেমি.
চারা দূর্ত	8 থেকে ৬ সেমি.
বীজ হার	800 গ্রাম/শতক

$\begin{array}{ll}\text { রোপণ সময় } & : \text { নভ্রে্বর থেকে ডিসেশ্বরর } \\ \text { ফসন কাটার সময় } & : \text { মার্চ থেকে এপ্রিল। } \\ \text { পরিচর্যা } & \text { : স্বাভাবিক পরিচর্যা। }\end{array}$

চিত্র ১৯ : বার্লি গাছ ও বার্লির শীষ
‘বার্লি গাছ উৎপাদনশীল কুশির সং্খ্যা বাড়ানোর জন্য সার দেওয়া জরুরি। লোনা এলাকায় বার্লির চাষ করলে সেক্ষেত্রে পটাশের পরিমাণ কিছুটা কমিয়ে দিলেও চরলে। অম্লীয় মাটিতে বার্লির চাষ করযত হলে জমিতে জমি প্রস্তুতের সময় চুন দিতে হয়। বাল্লি গাছ গম গাছছর চেয়ে কিছুটা নরম। তাই অতিরিক্ত নাইটোজ্েেনে বারণে গাছ হেলে পড়তে পারে। এজন্য বার্লিতে সুষম সার দিতে হয়।

বাংলাদদশে বার্লি চাষের অধীন জমির পরিমাণ কম। যা চায করা হয় তাতে থুব বেশি পরিচর্যা করা ছয় না বা তেমন সারও দেওয়া হয় না। তবে উফশী জাতে সুষমভাবে সার দিলে বার্লির ফলন বাড়ানো সম্ভু। বাংলাদেশের দক্ষিণাঞ্চলে বাল্লির চাষ করা ছলে তাতে পটাশ সার ও জিপসাম সারের পরিমাণ কিছুুা কমিয়ে দিনেেও চলে।

চীন ফসলে সার প্রढ़োগ

সারের নাম	সারের পরিমাণ/শতক
ইউরিয়া	৩৩০ গ্রাম
টिএসপি	২৫০ গ্রাম
এমপি	২৫০ গ্রাম
জিপসাম ,	৫০ গ্রাম

চিত্র ২০: চিনার শীষ
(বাংলাদেশে চিনার চাষে খুব যত্ল করে সার দেওয়া হয় না। কিন্তু উচ্চ ফলন পেতে হলে জমিতে সুষম সার দিতে হয়ে।)

প্রয়োগ পদ্ধতি

সবটুকু সার জমি প্রস্তততের সময় প্রয়োগ করতে হয়।
জাত : তুষার কুমার ধন, বাগাইকান্দি, হোয়াইট সিলেট।
ফলনমাত্রা : 8 থেকে৬ কেজ্জি/শতক
রোপণ দূরত্ব : সারির দূরত্ব ২০ থেকে ২৫ সেমি. চারার দূরত্ব 8 থেকে ৬ সেমি.
বীজ হার : 80গ্রাম/শতক
রোপণ সময় : ডিসেম্বর থেকে জানুয়ারি
কাটার সময় : মার্চ থেকে এপ্রিল
পরিচর্যা : স্বাভাবিক পরিচর্যা
বাংলাদেশের চরাঞ্চলসহ অন্যান্য অপেক্ষাকৃত অনুর্বর জমিতে bীনার চাষ করা হয়। তাই বর্তমান্ন চিনার ফলনও কম। কিন্তু যথাযথ মাত্রায় সার প্রয়োগ করর এর ফলন বাড়ানো সষ্তব।

বাংল্লাদেশে তুষার নামে চিনার একটট উচ্চ ফল্গনশীল জাত উদ্ভাবন করা হয়েছে। এই তুষার জাতির চীনার চাষ করে উচ্চ ফলন পেতে হলে অবশ্যই সুষম মাত্রায় রাসায়ানিক সার প্রয়োগ করতে হয়।

কাউন্নর জমিতত সার প্রয়োগ

সারের নাম	সারের পরিমাণ/শতক
ই্টরিয়া	800 গ্রাম
টি এস পি	$\bigcirc 00$ গ্রাম
এম পি	200 গ্রাম
জিপসাম	90 গ্রীম

প্রয়াগপদ্ধতি

সবটুকু সার জমি প্রস্তুতের সময় প্রয়োগ করততে হয়।

```
জাত : তিতাস লক্ষ্মীপুর - ২; শিবনগর, মগরা, অরজুনা, পরనেশ্বর,
    বগুড়া-১
ফলনমাত্রা : ৭ থেকে ১০ কেজি/শতক
রোপণ দূরত্ব : সারির দূরত্ব : ২০ থেকে ২৫ সেমি.
চারার দূরত্ব : ৮ থেকে ১০ সেমি.
```

বীজ হার	: এ৫ গ্রাম
রোপণ সময়	: জানুয়ারি থেকে ফেবুয়ারি
কাটার সময়	$:$ এপ্রিল থেকে মে
পরিচর্যা	$:$ স্বাভাকিক পরিচর্যা।

চিত্র ২১ : কাউন বা ফব্স টেইল মিলেট (Fox tail mllet)

- জমিতে পৃর্ববতী ফস্লে রাসায়নিক সার বাবशার ক্রলে কাউনের জমিতে নতুন ক<রে সার ব্যবशার করা হয় না। তবী টচ্ড ফলन পেতত হলে জমিতে সুযম সার বিশিষ করর নাইটোজেন ও ফসরফটট সার অন্যান্য সারের অনুপাতত সুষমভার্ প্রয়োগ করতে হয়।)
বাংলাদাশর অননক স্থান্ন বাউনের চায হয়। তবে কুমিল্লায় এর চাষাবাদ ও ফলন বেশি। কুমিল্লায় পরিপূণ মাত্রায় সার দেওয়া গোলআলুর জমিতে কাউনের চাযাবাদের সময় কাটনন সার কিছুটা কম দিলেও চলে।

সরগাম্ম সার প্রয়োগ

বীজের জন্য

সারের নাম	সারের পরিমাণ/শতক
ইউরিয়া	৬৩০ গ্রাম
টिএসপি	৩৫০ গ্রাম
এমপি	২৫০ গ্রাম
জিপসাম	200 গ্রাম

চিত্র ২২: সরগাম
। সরগাম উৎপাদনের জন্য অन्্প সময়ে う০ থেকে ১৩টি স্বল সত্জ-সবুজ পাতা উৎপাদনের জনা মাটির উর্বর্রার ভিত্তিতে সুযম সার দিতে হয়।:

গো-খাদ্যের জন্য

সারের নাম	পরিমাণ গ্রাম/শতক
ইউরিয়া	৬৫০ গ্রাম
টিএসপি	১৭0 গ্রাম
এমপি	১৫০ গ্রাম

প্রয়োগ পদ্ধতি

সকল সার জমি প্রস্তুতের সময় প্রয়োগ করতে হয়ে

রোপণের দূরত্ব : বীজের জন্য $80 \times$ ২০ সেমি.	
	গো-খাদ্যের জন্য $\quad ৩ 0 \times ১ ০$ সেমি.

বীজ হার : বীজের জন্য ৬০ গ্রাম গো-খাদ্যের জন্য ১২০ গ্রাম
ফলন-মাত্রা : বীজ ৮ থেকে ১২ কেজি/শতক
রোপণ সময় : নভেম্বর থেকে ফেব্রুয়ারি
কাটার সময় : জানুয়ারি থেকে জুন
পরিচর্যা : স্বাভাবিক পরিচর্যা।
বর্তমানে হাস-মুরগির খাদ্য হিসেবে সরগামের ব্যবशার বৃদ্ধি পাওয়ায় বাংলাদেশে সরগামের চাষাবাদ বাড়ছে। সুষম রাসায়নিক সার ব্যবহার করে অধিক ফলন প্রাপ্তির মাধ্যমে সরগামের চাষ এদেশে আরও লাভজনকক করা সম্তব।

ভুট্টায় সার প্রয়োগ

সারের নাম	সারের পরিমাণ/শতক
ইউরিয়া	৯৫০ গ্রাম
টिএসপি	৫৩০ গ্রাম
এমপি	৫০০ গ্রাম
জিপসাম	800 গ্রাম
দস্তা সার	80 গ্রাম
বোরাד্স	80 গ্রাম

প্রয়োগ পদ্ধতি

১. এক-ত্তীয়াংশ ইউরিয়া এবং অন্যান্য সকল সার জমি প্রস্তুতের সময় প্রয়োগ করতে হয়।
২. বাকি ইউরিয়া ২ ভাগ করে একভাগ গাছ হাঁটু সমান হওয়ার পর এবং দ্বিতীয় বার গাছ্ ফুল আসার সময় পার্শ্ব প্রয়োগ করতে হয়।

জাত	: বর্ণালী, শুভ্রা, چৈ ভুটুা, মোহর, সভ্কর জাত
রোপণ দূরত্ধ	$:$ ৭০×২৫ সেমি.
বীজ হার	$:$ ১২০ গ্রাম/শতক
ফলন	$:$ ২৫ থেকে ৩০ কেজি
রোপণ সময়	$:$ রবি ও খরিপ মৌসুম

চিত্র ২৩ : ভুট্টা গাছ ও ভুট্টা মোচার বৈশিষ্ট্য।
গো-খাদ্য হিসেবে ভ্রুঁর চাষ করতে হলে বীজ্জের পরিমাণ ২ থেকে ৩ গুণ করতে হয়। খরিপ মৌসুম্মর ভু তুার চেয়ে শীতকালীন ভুট্টার চাযে সারের পরিমাণ বেশি লাগে। ডুট্টা

আন্ত:ফসল্न চাষে মূল ফসলের সাথে সমন্নয় করে সার দিতে হয়। অম্লীয় মাটিতে ভুট্রায় ম্যাগনেশিয়ামের অভাব দেখা দিলে ম্যাগসালফ ব্যবহার করতে হয়।
ফ্সন্ন কাটার সময় : বীজ রোপণের ৩ থেকে 8 মাস পর গো-খাদ্যের জন্য ২ থেকে ২.৫ মাস পর।

পরিচর্যা : সম্পূরক সেচ, আগাছা দমন ও ফসল সংরক্ষণ।
মিষ্টি আলুর জমিতে সার প্রয়োগ

সাররর নাম	সারের পরিমাণ/শতক
ইউরিয়া	৬৮० গ্রাম
টি এস পি	৬৮০ গ্রাম
এম পি	৬০০ গ্রাম
জিপসাম	২৫০ গ্রাম
দস্তা সার	২০ গ্রাম

প্রয়োগ পদ্ধতি

১. ইউরিয়া ব্যতীত সকল সার জমি প্রস্তুতের সময় প্রয়োগ করতে হয়।
২. ইউরিয়া সার ২ বারে চারা রোপণের ১০ দিন এবং 80 দিন পর প্রয়োগ করতে ऱয়।

জাত
: কমলা সুন্দরী, তৃপ্তি, দৌলতপুরী, বারি মিষ্টিআলু - 8, বারি মিষ্টি আলু - ৫
ফলন : ১৫০ থেকে ১৮০ কেজ্জি
রোপণ দূরত্ব : ৬০ \times ২৫ সেমি.
বীজহার : ২৭০ টি লতাখণু/শতক
রোপণ সময় : নভেম্বর থেকে ডিসেম্বর
ফসল তোলার সম়য় : মার্চ থেকে এপ্রিল
পরিচর্যা : আগাছা দমন, গাছের গোড়া বাঁধাই, সেচ দান ও ফসল সংরক্ষণ।

বেলে প্রধান মাটিতে মিষ্টি আলুর চাষ বেশি হয়। বেলে মাটির উর্বরতা কম। তাই উচ্চ ফলনশীল জাতের মিষ্টি আলু চাষ করে অধিক ফল্লন পেতে হলে নির্ধারিত মাত্রায় সার প্রয়োগ করতে হয়ে’। দেশীয় মিষ্টি আলুর জাতে সারের পরিমাণ কমিয়ে দিতে হয়।

চিত্র ২৪ : মিষ্টি আলু
ক্দাল ফসল হিসেবে অধিক ফলনের জন্য মিষ্টি আলু মাটি থেকে প্রচুর পরিমাণ পুষ্টি উপাদান বিশেয করে পটাশিয়াম পরিশোষণ করে।

গোল আলুর জমিতে সার প্রয়োগ

সারের নাম	সারের পরিমাণ/শতক
ইউরিয়া	2000 গ্রাম
টিএসপি	$8 ৫ 0$ গ্রাম
এমপি	980 গ্রাম
জিপসাম	$2 ৫ 0$ গ্রাম
দস্তা সার	$৫ 0$ গ্রাম
ম্যাগসালফ	$৫ \circ$ গ্রাম

প্রয়োগপদ্ধতি

১. অধিক ইউরিয়া ও অন্যান্য সকল সার জমি প্রস্তুতের সময় প্রয়োগ করতে হয়।
২. বাকি ইউরিয়া বীজ রোপণের ৩০ থেকে ৩৫ দিন পর পার্শ্ব প্রয়োগ করে ভেলি বেঁধে দিতে হয়।

চিত্র : ২৫ গোলআলু গাছ।
'গোলআলু গাত্ছ অত্যন্ত অল্প সময়ের মধ্যে আলু উৎ্পাদন শুরু করতে হয়। এজন্য আলুর জমিতে সুষম সার দিতে হয়। ইউরিয়া কিস্তিতে প্রয়োগ করতত হ্য়। পটাশিয়াম বেশি मিতে হয় এবং এলাকাভেদে ম্যাগনেশিয়াম সার দিতত হ্য।

জাত

ফল্লন : ১০0 থেকে ১৩০ সেমি./শতক
রোপণ দূরত্ব : ৬০ \times ২৫ সেমি.
বীজ হার

```
রোপণ সময় : অক্টোবর থেকে নভেম্বর
ফসল তোলার সময় : জানুয়ারি থেকে মার্চ
পরিচর্यা : आগাছা দ亠ন, সেচ দান, গাছের গোড়া বাঁধাই, মালচিং ও
রোগ দমন।
```

গোলআলুর জমিতে অনাবশ্যক অতিরিক্ত ইউরিয়া সার দির্न কন্দর ফলন কন্ম যেতে পারে এবং রোগের আক্রমণ বেড়ে যেতে পারে।

আখ ফসলে সার প্রয়োগ

সারের নাম	সারের পরিমাণ/শতক
ইউরিয়া	$১ ২ ০ 0$ গ্রাম
টিএসপি	৫00 গ্রাম
এমপি	$১ 000$ গ্রাম
জিপসাম	$৬ 00$ গ্রাম
ম্যাগনেশিয়াম ইপসমলকা	৫০০ গ্রাম (অম্ল মাটিতে)
দস্তা সার	$১ ৩ ০$ গ্রাম

প্রয়োগ পদ্ধতি

১. ইউরিয়া ব্যতীত সকল সারের অর্ধেক পরিমাণ জমি প্রস্তুতের সময় ছিটিয়ে প্রয়োগ করতত হয়।
২. ইউরিয়া ব্যতীত সকন সারের বাকি অংশ পরিখার তলদেশের মাটির সাথে মিশিয়ে দিতে হয়।
৩. চারা রোপপের দ্বিতীয়, চতুর্থ ও পঞ্চম মাসে ৩টি সমান কিস্ততে ইউরিয়া প্রয়োগ করতত হয়।
8. আগাছা দমন ও গাছছর গোড়া বাঁধাইয়ের সময় ইউরিয়ার কিস্তিগুলো প্রয়োগ করতে रड़।
জাত : ঈশ্বরদী ২/৫৪, ঈশ্বরদী - ১৬, ঈশ্বরদী ৯/৫৭, কোয়েম্বাটোর ১১৫৮, বিও - ১৭ সহ ঈশ্বরদীর অন্যান্য অনুমোদিত জাতসমূহ
ফলন : ৩০০ থেকে 800 কেজি/শতক
রোপণ দূরত্ব : ১০০ × ২০ সেমি.
বীজ হার : >৪0টি সেট/শতক
রোপণ সময় : অক্টোবর থেকে জানুয়ারি
ফসল কাটা : ১২ থেকে ১৮- মাসের মধ্যে

পরিচর্যা : আগাছা দমন, गার প্রয়োগ, গোড়া বাঁধাই গাছ বাঁধাই, সেচ প্রদান

চিত্র ২৬: আV
 গ্রহণ করতে পারে। বিশেষ করে ইউরিয়া সার কিত্তিতে প্রत্যোগ করতে হয়। কোনো কোনো অম্লীয় জমিতে ম্যাগনেশিয়াম প্রল়াোগ করত়ত হয়।

তামাকে সার প্রয়োগ

সারের নাম	সারের পরিমাণ গ্রাম/শতক
ইউরিয়া	8२० গ্রাম
টিএসপি	800 গ্রাম
এসপি	800 গ্যাম
দস্তা সার	৩০ গ্রাম

চিত্র ২৭ : উन্নত মানের তামাক পাতা
: তামাকের মূল উৎপাদन হচ্ছে এর পাতা। সার বা পুষ্টির অजাবজনিত কারণে গা巨ূ পাতায় দাগ দেখা দিল্লে বা পাতার আকার-আকৃত্তি নষ্ঠ ছয় গেলে তামক চাষ থেকে আয় কল্য যায়। এজন্য জামাকে সুষय সার এবং সঠিক প্রকারের সার ব্যবহার করা দরকার।

প্রয়োগ পদ্ধতি

১. এক-তৃতীয়াংশ ইউরিয়া এবং অন্যান্য সার জমি প্রস্তুতের সময় প্রয়োগ করয় रয়।
২. বাকি ইউরিয়া দুই কিস্তিতে চারা রোপণের ৩৫ ও ৫০ দিন পর প্রয়োগ করভে रয়।

জাত	সিগারেট, হুক্ন, বিড়ি ও চুরুট
ফলन	৮- থেকে ১২ কেজি/শতক
রোপণ দূরত্ব.	$90 \times$ ৬০ সেমি:
রোপণ সময়	নভেশ্বর থেকে জানুয়ারি
কাটার সমময়	ফেব্রুয়ারি থেকে এপ্রিল (বৃষ্টির আগে হল্লে ভাল)
পরিচ্যা	আগাছা দমন, রোগ পোকা দমন, কুঁড়ি ভাঙা, পাতা সং্তর।

তামাকের জমিতে পটাশিয়াম ক্লোরাইডের বদলে পটাশিয়াম সালফেট (এস পি) দিতে হয়। এজন্য অতিরিক্ত জিপসাম দেওয়ার প্রয়োজন পড়ে না। তামাকের জমিতে সুষম সার না দিলে তামাক পাতার মান করে যেতে পারে।

পাট গাছ্ সার প্রয়োগ

সाরের নাম	সারের পরিমাণ/শতক
ইউরিয়া	$8 ২ 0$ গঋাম
টिএসপি	২৭০ গ্গাম
এমপি	$৩ 00$ গ্রাম
জিপসাম	$২ 00$ গ্রাম
দস্তা সার	$৩ 0$ গ্রাম

প্রয়োগ পদ্ধতি

১. অধিক ইউরিয়া ও অন্যান্য সার পাটের জমি প্রস্তুতের সময় ব্যবহার করতে হয়।
২. বাকি ইউরিয়া দ্বিতীয় নিড়ানির পর উপরি প্রয়োগ করতে হয়।

জাত : ডি-১৫৪, সিভিএল-১, কেজি/শতক সিভি $--৩$, সিসি - ৪৫, অ-৪, ফাল্গুনী তোষা
ফল্নন : দেশী পাট ১২-১৫ কেজি/শতকক, ফান্গুনী তোষা ১০ থেকে ১৫ কেজি/শতক
রোপণ দূরত্ব : ২৫×৭ সেমি.
বীজ হার : ৩০ গ্রাম
রোপণ সময় : মার্চ থেকে এপ্রিল
কাতার সময় : জুলাই থেকে আগস্ট
পরিচর্যা : আগাছা দমন, আচঁড়া দেওয়া, গাছ পাতলাকরণ, ফসল সং্রক্ষণ।

চিত্র ২৮: পাট গাছ।
জ্যৈঠঠ্ঠ ও আযাত় মাসে পাট অত্যন্ত দ্রুত গতিতে বৃদ্ধি পায়। তাই এসময়ে যাতে সার বা পুধ্টি উপাদানের ঘাটতি না পড়ে সেদিকে খেয়াল রেখে সার দিতে হয়। পাটের জমির জন্য জৈব সার খুব উপকারী।

ফাল্গুনী তোষা পাট সার প্রয়োগ

পাটের দেশীয় জাত বা তিতা পাটটর চেয়ে তোযা প্রজাতির ফলন কিছুটা বেশি। সেজন্য সার চাহিদও বেশি।

সারের নাম	সারের পরিমাণ/শতক
ইউরিয়া	৭২০ গ্রাম
টि এস পি	৩৫০ গ্রাম
এমপি	$8 ৯ ০$ গ্রাম
জিপসাম	২৫০ গ্রাম
দস্তা সার	$-\circ$ গ্রাম

জ্ৰিব সার তথা গোবর বা কমপোস্ট প্রয়োগ করলে তোষা পাটের ফলন বৃদ্ধি পায়। প্রতি শুকে ১০ থেকে ১৫ কেজি শুকন্না গুঁড়া কমপোস্ট ব্যবহার করত্ হয়।

চিত্ত ২৯ : जাযা পাট (ফলগুनী ज্ৰষা)।

প্রয়োগ পদ্ধতি

১. অর্ধ্রক ইউরিয়া ও অন্যান্য সার পাটের জমি প্রস্তুতের সময় ব্যবহার কর়তে হয়।
২. বাকি ইউরিয়া দ্বিতীয় নিড়ানির পর উপরিপ্রয়োগ কর্রতে হয়।

জাত : ফাল্গুনী তোষা, অ-8
ফলন : ১৫ থেকে ২০ কেজি/শতক
রোপণ দূরত্ব : ২৫ সেমি. \times ৮ সেমি.

বীজ হার : ২৫ গ্রাম/শতক
রোপণ সময় : মার্চ থেকে এপ্রিল (কিছু্যা আগাম)
কাটার সময় : জুলাই থেকে আগস্ট
পরিচর্যা : আগাছা দমন, আচঁড়া দেওয়া, গাছ পাতলাকরণ ও ফসল সংরক্ষণ।

শন পাট

সারের নাম	সারের পরিমাণ/শতক
ইঁউরিয়া	$১ 00$ গ্রাম
টিএসপি	$১ ৫ ০$ গ্রাম
এসপি	$১ 00$ গ্রাম
জিপসাম	৭৫ গ্রাম
দস্তা সার	$২ 0$ গ্রাম

প্রয়োগ পদ্ধতি

সকল সার জমি প্রস্তুতের সময় প্রয়োগ করতে হরয়ে।
জাত : কানপুর ১২, টি-৬

ফলन : ৫ থেকে ৭কেজি/শতক
বপন দূরত্ম : ২৫×৭ সেমি.
বীজ হার : ১৩০.গ্রাম
বপন সময় : মার্চ থেকে এপ্রিল
কাটার সময় : জুলাই থেকে আগস্ট
পরিচর্ষা : স্বাভাবিক পরিচর্যা।

শন পাট লিগ্যুম গোত্রের অন্তর্ভুক্ত বলল এরদর ইউরিয়া সারের পরিমাণ কম দিতে হয়, কারণ শন পাটের শিক্ড়ে নাইট্রোজেন গুটি উৎপাদিত হয়।
সুবজ সার হিসেবে শন পাটের চাষ করা হলে বীজ্রের পরিমাণ বাড়িয়ে দিতে হয়ে।
শন পাটের আশের গুণাবলী উন্নত করার জন্য পরিমিত ফসফেট ও পটাশ সার প্রয়োগ করা দরকার।

জমিতে পানি লাগলে শন পাটের ক্ষতি হতত পারে। এজন্য শন পাটের জমিতে পানি নিকাশের ব্যবস্থা করতে হয়।

চিত্র ৩০: শন পাট
মেস্তার জমিতে সার প্রয়োগ

সারের নাম	সারের পরিমাণ/শতক
ইউরিয়া	$8 ৫ 0$ গ্রাম
টिএসপি	$১ ৫ 0$ গাম
এমপি	$১ ৭ ৫$ গ্রাম
জিপসাম	$১ 00$ গ্রাম
দস্তা সার	২০ গ্রাম (প্রয়োজনে)

প্রয়োগ পদ্ধতি
সবটুকু সার জমি প্রক্তুত্র সময় ব্যবহাষ করতত হয়।
জাত
: টাनि ম্সেস্তা - ১
ফলন : ৭ থেকে ৯ কেজি/শতক
রোপণ দূরত্ম : ২৫ \times ৮ সেমি.
বীজ হার : ৬০ গ্রাম
র্রাপণ সময় : মার্চ থেকে এপ্রিল
কাটার সময় : জুলাই থেকে আগস্ট
পরিচর্যা : স্বাजাবিক পরিচর্যা, आগাছা দমন
মেস্তা জলাবদ্ধতা সহ্য করতত পারে না।

বাংলাদেশে অঁশ ফসল হিসেবে মেস্তার চাষাবাদ কম। তবে পরিমিত সুষম সার দিয়ে আবাদ করলে ফলন বেশি হয় এবং আঁশের মান ভাল্ হয়।
অন্যান্য ফসলের সাথ্থ উপযুক্ত ফসল বিন্যাস (cropping pattern) অনুসরণ করে চাযাবাদ করলে অর্থনৈতিকভাবে বেশ লাভবান হওয়া যায়।

কেনাফ জমিতে সার প্রয়োগ

সারের নাম	সারের পরিমাণ/শ্তক
ইউরিয়া	২৫০ গ্রাম
টিএসপি	$১ ৫ 0$ গ্রাম
এমপি	$১ ০ ০$ গ্রাম
জিপসাম	$৬ ০$ গ্রাম
দস্তা সার	২০ গ্রাম (প্রয়োজনে)

প্রয়োগ পদ্ধতি

সকন সার জমি প্রস্তুতের সময় প্রয়োগ করতে হয়।

জাত	জনী কেনাফ-১ বা কেনাফ সি-২, এইচ সি ৮-৭৬
एलन	8 থেরে ৬ কেজ্রি
রোপণ দূরত্ব	00×9 সেমি.
বীজ হার	৬০গ্রাম/শতক
রোপণ সময়	মার্চ থেকে এপ্রিল
কাটার সময়	জুলাই থেকে আগস্ট
পরিচর্যা	আগাছা দমন, ফসল সং্রক্ষণ ও অন্যান্য স্বাভাবিক

বাংলাদেশে আশশ ফসল হিসেবে ধেনাফের চাষাবাদ কম। কারণ ফলন কম কিন্তু পরিমিত সার দিয়ে চাষাবাদ করলে কেনাফের ফলন বাড়বে। উপযুক্ত ফসল বিন্যাসের অন্তর্ভুক্ত করে চাষাবাদ করতে পারলে কেনাফ চাষ করে অর্থনৈতিকডাবে যথেষ্ট লাভবান হওয়া যায়। আশ ফসলে বহুমুখিতা আনয়নের জন্য কেনাফ বেশ গুরুত্বের দাবীদার।

তুলায় সার প্রয়োগ

সারের নাম	সারের পরিমাণ/শতক
ইউরিয়া	৭৭০ গ্রাম
টिএসপি	৫০০ গ্রাম
এমপি	$৬ ৩ ০$ গ্রাম
জিপসাম	২৫০ গ্রাম
দস্তা সার	৫০ গ্রাম

প্রয়াগ পদ্ধতি

১. এক-তৃতীয়াংশ ইউরিয়া এবং অন্যান্য সার তুলার জমি প্রস্তুতের সময় প্রয়োগ করতে হয়।
২. ইউরিয়া বাকি অংশ ২ ভাগে বীজ বপনের ৩০ দিন এবং ৬০ দিন পর প্রয়োগ করতে হয়।
৩. ডডসিওয়াই ১, ডেল্টা পাইন, ডেফ বিএসি -৭ বা রূপালী বিএসি -- ২৪ বিএসি -- ৭৯

ফলন	: b থেকে ১২ কেজি/শতক
রোপা দূরত্ব	: 9৫ \times र৫ সেমি.
বীজ হার	: ৮- ⿹্রীম/শতক
ররাপ্ণ সময়	: আগস্ত খেকে সেপ্টে*্বর
ফসল তোলার সময়	: एেব্রুয়ারি থেকে এপ্রিল
পরিচর্যা	: आগাছা দমন, সেচদান ও ফসল সংরক্ষণ।

চিত্র 00 : তুनা গাए
 निॅ্ডর করে। তাই তুলা জ্রমিতে এমনভারে সার প্ররয়াগ করcত হয়ে যাতে গাছছর প্রাথমিক বৃদ্ধি দ্রুত रয়, গাছছর কাঠাম্মা শক্ত হয় এবং শিকড় মাটির গভীরর প্রবেশ কররে।

খেসারি জমিতে সার প্রয়োগ

সারের নাম	সারের পরিমাণ/শতক
ইউরিয়া	৮০ গ্রাম
টিএসপি	$১ 90$ গ্রাম
এমপি	৯০ গ্রাম
জিপসাম	৬০ গ্রাম

চিত্র 98: খেসারি গাছ
খেসারি গাছ লিগ্যুম গ্গেত্রের অন্ত্ভুক্ত। তবে মাটিতে প্রারষ্ভিক অবস্থায় পুষ্টির অভাব एলে গাছ
 অনুসারে খেসারি জমিতে সার বিয়ষ করে ফ্সফৌট সার দিতে হয়।

প্রয়োগপদ্ধতি

সকল সার জমি প্রস্তুতের সময় ব্যবহার করতে হয়।

জাত	কলা রোয়া, খেসারি ৬১৩০, জামালপুর
ফলन	৫ থেকে ৭ কেজি/শতক
বীজ হার	১২০ গ্রাম
রোপণ সময়	নভেশ্বর থেকে ডিসেম্বর
কাটার সময়	মার্চ থেকে এপ্রিল

বাংলাদেশে বোনা আমনের জমিতে অনুফ্সল (Relay crop) হিসেবে খেসারির চাষ কর়ে সাধারণত সার দিতে হয় না। তবে উচ্চ ফলনের জন্য আলাদা একক ফসল হিসেবে চাষ করুতে হলে এই সার দিতে হয়। পাবনা, রাজশাহী, নেত্রকোনা, ফরিদপুরসহ হাওড়/বাঁওড় এলাকায় খেসারির চাষ বেশি হয়।

খেসারি লিগ্মুম গোত্রের অন্তর্ভুক্ত বাল এতে নাইট্রোজেন সার কম দিতে হয়। জমিতে খেসারির চাষ করুলে জমির উর্বরতা বাড়ে।

মসুর জমিতে সার প্রয়োগ

সারের নাম	সারের পরিমাণ/শতক
ইউরিয়া	$\vdots ২ ০$ গ্রাম
ढिএসপি	800 গ্রাম
এমপি	$\langle ৯ ০$ গ্রাম
জিপসাম	২২০ গ্গাম
সোডিয়াম মলিবডেট	২০ গ্রাম
জীবাণু সার	প্রস্তুতকারকের সুপারিশ অনুযায়ী

সব সার জমি প্রস্তুতের সময় প্রয়াগ করতে হয়।
জাত
: এল - ৫ বা উৎফলা, বারি মসুর - ২, বারি মসুর - ৩, বারি মসুর-8
ফলন : ৫ থেকে ৭.কেজি/শতক
রোপন দূরত্ব : ছিটিয়ে বোনা
বীজ হার : ৮০ গ্রাম
রোপণ সময় : নভেম্বর থেকে ডিসেম্বর
ফসল কাটার সময় : ফেব্রুয়ারি থেকে মার্চ
ককানো জমিতে জীবাণু সার দিলে নাইটোজেন যোগাবে এবং ফলনও বাড়বে।
বোনা আমন ধানের জমিতে. অনুফসল হিসেবে মসুরের চাষ করললে তেমন সার ব্যবহার করা হয় না।
তবে উচ্ড ফলনের জন্য একক ফসল হিসেবে চাষ করলে পরিমিত মাত্রায় সার প্রয়াাগ করততে হয়।

চিত্র ৩৫ : মসুর গাছ।
ছোলার জম্রিতে সার প্রয়োগ

সারের নাম	সারের পরিমাণ/শতক
ইউরিয়া	১২০ গ্রাম
টিএসপি	৩২০ গ্রাম
এমপি	২৯০ গ্রাম
জিপসাম	-৫O গ্রাম
দস্তা সার	২० গ্রাম
বোরাক্স	80 গ্রাম
জীবাণু সার	প্রস্তুতকারকের সুপারিশ অনুযায়ী

প্রয়োগ পদ্ধতি

সব সার জমি প্রস্তুতের সময় ব্যবহার করতে হুয়।

জাত	নবীন, বারি ছোলা - ১, বারি ছোলা - ২, বারি ছোলা ৩, বারি ছোলা - 8, বারি ছোলা - ৫, বারি ছোলা - ৬,
ফলनন	: ৭-৮কেজি/শতক
রোপণ দূরত্ব	: $80 \times$ रु সেমি.
বীজ হার	: ১২০ গ্রাম
রোপণ সময়	: নভেম্বর থেকে ডিসম্বর
ফসল তোলার সময়	: কেব্রুয়ারি থেকে মাচ্চ
পরিচর্যা	: আগাছা দমন ও রোগ-প্রেকা দমন।

চिত ৩も: ছোলা গাছ।

ছোলা জমিতে খুব সাবধানে নাইট়াজেন সার প্রয়োগ করতে হয়। কারণ নাইটোজেন সারের পরিমাণ অসম হলে গাছে ফুল-ফল উৎপাদন বিলম্বিত হয় ও পরিমাণে কমে যায়। সার প্রয়োগের সাথে সাথে রোগ দমন নিশ্চিত করতে হয়।

মুগ কলাই ফ্সলে সার প্রয়োগ

সারের নাম	সারের পরিমাণ/শতক
ইউরিয়া	200 গ্রাম
টিএসপি	১৮৫ গ্রাম
এমপি	৯৫ গ্রাম
জিপসাম	১২০ গ্রাম
দস্তা সার	२० গ্রাম
বোরা木্স	80 গ্রাম
জীবাণু সার	প্রস্তুতকারকের সুপারিশ অনুযায়ী

প্রয়োগ পদ্ধতি

সব সার জমি প্রস্তুতের সময় ব্যবহার করতে হয়ে।
জাত : কান্তি, বারি মুগ-৩, বারি মুগ-৩, বারি মুগ-8, বিনা মুগ-১, বিনা মুগ-২
ফলন : ৩ থেকে ৫ কেজি/শতক
বপন দূরত্ত : ২৫ ×৬ সেমি.
বীজ. शার : ৬৫গ্রাম/শতক
বপন সময় : অক্টোবর ও ফেব্রুয়ারি
মুবারিখ জাতের মুগকনাই গ্রীब্মকালে ও বর্ষাকালেও চাষ করা যায়।
ফসল তোলার সময় : জানুয়ারি ও মে
পরিচর্যা : স্বাভাবিক পরিচর্যা
বিভিন্ন সমস্যার কারণে ফসললে উচ্চ ফলন প্রাপ্তি নিচ্চিত না হলে সারের পরিমাণ কিছুটা কমিয়ে দিতে হয়।
মুগকলাই লিগ্যুম গোত্রের অন্তর্ভূক্ত বলে এর শিকড়ে নাইটোজেনসম্পন্ন নডিউল তৈরি হয়। এজন্য মুগকলাইয়ে নাইট্যাজেন সার কম দিতে হয়। তবে মুগকলাইয়ের ফলন বৃদ্ধির জন্য ফসফরাস প্রয়োগ খুব তাৎপর্যপূর্ণ। ফসফরাসের ঘাটতিতে মুগকলাই গাছে পাতা বেশি হয়ে যায়, ফুল কম হয়, তাই ফলনও কম হয়।

মাসকলাই ফসলन সার প্রয়োগ

সারের নাম	সারের পরিমাণ/শতক
ইউরিয়া	$১ 00$ গ্রাম
টिএস্সপ	$১ ৫ 0$ গ্রাম
এম পি	90 গ্রাম
জিপসাম	$১>0$ গ্রাম
জীবাণু সার	প্রস্তুতের সুপারিশ অনুযায়ী

চিত্র ৩b: মাসকলাই গাছ।
 নাইটোজেন গुটি ?তরি করে বলে নাইটোজেনের ज্মন ঘাটতি দেখা যায় না। তাব উক্ত ফলন প্রাপ্তির জন্য ফসফফটটসহ অন্যান্য সার সুষমভাবে প্রঢ়াগ করাত হয়!

প্রয়োগ পদ্ধতি
সব সার জমি প্রস্তুতের সময় ব্যবহার করত্ত হ্য়।

জাত	বারি মাস - ২, বার্রি মাস -
एलन	৩ থেকে 8 কেজি/শতক
রোপণ দূরত্ব	-0* ৬ সেমি.

বীজ হার : ৬৫ গ্রাম/শতক

রোপণ সময় : অক্টোবর ও ফেব্রুয়ারি (মাস কালাই বারো মাসি জাত, সারা বছরই চাষ করা যায়)

ফসল তোলার সময় : জানুয়ারি ও মে
পরিচর্যা: : স্বাজাবিক পরিচর্যা।

গো-খাদ্য বা সবুজ সার रिসেবে মাসকলাইয়ের চাষ করা হল্লে বীজ হার ২ থেকে ৩ গুণ বাড়িয়ে দিजে रুয়। গতানুগতিক চাষাবাদে জমি চাষ না করে তাতে বীজ বুনে দিলে সেক্ষেত্রে সারের ব্যবহার কর্রা সন্তব নাও হতে পারে। তবে এতে ফলন খুব কর্ম যায়।

মটর জ্জমিতে সার প্রয়াগ

সারের নাম	সাররর পরিমাণ/শতক
ইউরিয়া	৯৫ গ্রাম
টিএসপি	১৭० গ্রাম
এমপি	90 গ্রাম
জিপসাম	৮৫ গ্রাম
দস্তা সার	১০ গ্রাম

প্রয়োগ পদ্দতি

সব সার জমি প্রস্তুতের সময় ব্যবহার করতত হ্য়।
জাত : বাগাতি পাড়া, এফ সি ৩৬৮১
ফলन : ৫ থেকে ৭ কেজি/শতক
রোপণ দূরত্ব : ২80 গ্রাম/শতক
বীজ হার : ২80 গ্রাম/শতক
রোপণ সময় : নভ্তে্্বর থেকে ডিসেস্ব্রর
ফসল जোলার সময় : জানুয়ারি থেকে মার্চ
গরিচর্যা : आগাছ্হ দূন ও ফসন্স সংরক্ষণ।

চিত্রু: মটর।

 তবে হিসাবমতো অন্যান্য সব সার না দিলে গাঁছ পাতা বেশি হয়़ ফলन কল যায়। তাই

মটরের বিভিন্ন স্থানীয় জাত থাকতে পারে, যেমন- এগুালার ফলন কম।
মটর লিগ্যুম গোত্রের অন্তর্ভুক্ত বলে এর নাইটোজেন সার চাহিদা কম। ম৩র গাছের
 অভাব দেখা দিয়ে থাকলেই কেবল জিপসাম ও দস্তার সার প্রয়াগ কর্যে হয়।

অড়হুরে সার প্রতয়াগ

সারের নাম	সারের পরিমাণ/শ৩ক
ইটরিয়	200 গ্রাম
টিএসপি	Obo S্রাম
এমপি	১৯০ গ্রাম
জिপসাম	২৩০ গ্রাম
দস্তা সর	৩৫ গ্রাম
বোরান্স	80 গ্রাম

সিত্র 80 : অড়ছর

প্রয়োগ পদ্ধতি

সব সার রোপণ সারির জমি প্রস্তুতের সময় ব্যবহার করতে হয়ে।

জাত
ফলन
রোপণ দূরত্ব

বীজ शার
রোপণ সময়
ফসল তোলার সময়
পরিচর্যা
: শালিয়া, পাটনাই, আইপিসিএল - ২, নং ৭৮০১২
: ৫ থেকে ৭ কেজি/শতক
: লम্বা গাছ $300 \times$ ২৫ সেমি. খাটো গাছ ৩৫ \times ১২ সেমি.
: b-০গ্রাম/শতক
: জানুয়ারি থেকে ফেব্রুয়ারি
: জুন থেকে জুলাই
: আগাছ দমন ও ফসল সংরক্ষণ।

বাংলাদেশ্ মাঠ ফসল হিসেবে ছাড়াও জাতভেদে রাস্তার পাশে বা বাঁধের পাশে অড়হর গাছ লাগানো হয়ে থাকে। রাস্তা বা বাঁধের পালে এক সারি বা দুই সারিতে লাগানো হলে লম্বা সারিকে রোপণ দূরত্ব অনুসারে শতককে জমির পরিমাণ নিরীপণ করে সেই অনুযায়ী সার প্রয়োগ কররে হয়। গাছে ফুলের সংখ্যা কম হওয়া ও ফুল ঝরে পড়ার লক্ষণ দেখা দিলে বোরন সার অর্থাৎ বোরা木্স সার স্প্রে করা যায়।

গো-মটর বা কাউপিতে সার প্রয়োগ

সারের নাম	সারের পরিমাণ/শতক
ইউরিয়া	200 গ্রাম
টিএসপি	৩৮০ গ্রাম
এমপি	२०० গ্রাম
জিপসাম	২২০ গ্রাম
দস্তু সার	२० গ্রাম
বোরাক্স	80 গ্রাম
জীবাণু সার	প্রস্তুতকারকের সুপারিশ অনুযায়ী

প্রয়োগ পদ্ধতি

সব সার জমি প্রস্তুতের সময় ব্যবহার করতে হয়।
জাত : বারি ফেলন - ১, বারি ফেল্নন - ২, ভিটা -- ৬, ভিটা ৭, ভিটা-b।
ফলন : ৫ থেকে৭ কেজি/শতক
রোপণ দূরত্ব : ৭০ \times २० সেমি.

চিত্র 8১ : গোমটর বা কাউপি গাছ।
(অन্যানা ল্লিগিউম ফসন্লর অনুরূপ গোমঁটরেও সুষম সার প্রয়োগ কর<ভ হয়।)
বাং্নাদেশ চটुগ্রামে বিপুল পরিমাণ জমিতে গো-মটর বা কাউ্ৰির চাষ হয়! ধানের এসব জমিতে গো-মটর (ফেলন) চাষ করা হয় এবং এতে তেমন কোন্া সার দেওয়া হয় না। বেহেতু বর্তমানে গো-মটরের উন্নত জাত রয়েছে সেজন্য এসব উন্নত জাত চাষ করে অধিক ফলन পেতে হলে সুষমভাব্ সার প্রয়़াগ কররত হয়। তবে স্থানীয় জাতসমূহে সার প্রয়োগের সময় সারের পরিমাণ কমিয়ে দিতে হয়।

সরিষায় সার প্রয়োগ

সারের নাম	জাতভেদে সারের পরিমাণ (গ্রাম/শতক)	
	সোনালী সরিষা, বারি সরিষা-৬ বারি সরিষা-৭ বারি সরিষাা-b- সফল অগ্রণী	টরি - ৭, কল্যাণীয়া, রাই-৫, দৌলত
ইউরিয়া	b-৫৫ গ্রাম	৬৭৫ গ্রাম
টিএসপি	800 গ্রাম	৩২০ গ্রাম
এমপি	৩৫O গ্রাম	২৮০ গ্রাম
জিপসাম	800 গ্রাম	$\bigcirc 00$ গ্রাম
দস্তা সার	৫O গ্রাম	80 গ্রাম
বোরাক্স	80 গ্রাম	80 গ্রাম
ফলন (কেজি/শতক)	৬ থেকে ৯	8 থেকে ৬

প্রয়োগ পদ্ধতি

১. অর্ধ্বক ইউরিয়া এবং অন্যান্য সব সার জমি প্রস্তুতের সময় প্রয়োগ করতে হয়ে।
২. বাকি অর্ধেক ইউ়িয়া বীজ বপনের ২০ থেকে ২৫ দিন পর উপরিপ্রয়োগ করতে इয়।

বীজ বপন দূরত্ব $\quad:$ ২৫ $\times ৫$ সেমি.
বীজ হার : 80 গ্রাম/শতক
রোপণ সময় : অক্টোবর থেকে নভেম্বর
ফ্সল তোলার সময় : জানুযারি থেকে ফেব্রুয়ারি
পরিচর্যা : আগাছা দমন, পানি সেচ, ফসল সংরক্ষণ।
সরিষার ফলন অনেকাং্ সার সরবরাহের উপর নির্ররশীল। সোনালি সরিষা, সফল ও অগ্রণী জাতে উচ্চ ফলন পেতে হল্লে নির্ধারিত মাত্রায় সার প্রয়োগ করতে হয়।

तिज 8२ : अरिसा গाए

 ব। জাবপ্পাকার आত্রমণ ঢেখা দিল্ল তাও দমন করতত হ্য।

তিলে সার প্রয়োগ

সারের নাম	সারের পর়িমাণ/শ\|তক
ইউরিয়া	৫২০ গ্রাম
টিএসপি	800 গ্রाম
এমপি	২१० গ্রাম
জিপসাম	र৫० গ্রাম
দস্তা সার	$\bigcirc \bigcirc$ গ্রাম
বোরাঅ্	80 গ্রাম

চিত্র 8 : তিল।

প্রয়োগ পদ্ধতি

১. অর্ধেক ইউরিয়া এবং সকল সার জমি প্রস্তুতের সময় প্রয়োগ করতে হয়।
২. বাকি অর্ধেক ইউরিয়া বীজ বপননর ৩০ থেকে. 80 দিন পর উপরি প্রয়োগ করতে ऱ।

এখানে উब্লেখ্য যে, স্থানীয় জাতের তিলের চাষ করলে এবং অন্যান্য পরিচর্যার সুযোগ কম থাকলে, অর্থাৎ ফলন কম হ্ওয়ার আoশকা থাকলে সারের পরিমাণ কমিয়ে দিতে रয়।

তিসিতে সার প্রয়োগ

সারের নাম	সারের পরিমাণ/শতক
ইউরিয়া	২৭৫ গ্রাম
টিএসপি	২০০ গ্রাম
এমপি	৯০ গ্রাম
জিপসাম	১২০ গ্রাম
দস্তা সার	$৩ ০$ গ্রাম
বোরা木্স.	80 গ্রাম

প্রয়াগ পদ্ধতি
সব সার জমি প্রস্তুতের সময় প্রয়োগ করতে হয়।
জাত : নীলা ধামরাই, নং ৮২২৫

एলन	$: 8-৬$ কেজি
রোপণ দূরত্ব	$:$ ২० $\times>0$ সেমি.

বীজ शার : ৮০ ⿹্রাম/শতক
রোপণ সময় : নভ্র্ব্বর-ডিসসম্বর
ফসন তোলার সময় : ফ্রেব্রুয়ারি - মার্চ
পরিচর্যা
: আগাছা দমন, সুযোগমরো সেচ ও ফসল সংররকণ।
বরেন্দ্র অঞ্চাল বৃষ্টি নির্ডর অবস্থায় অন্যান্য ফসলের সাথে ফসল বিন্যাসের অন্তর্ডুক্ত করে আন্ত:ফসল হিসেবে তিসির চায করলে মূল ফসলের চাহিদার সাঁথে মিল রোখে তিসিতে সার প্রয়োগ করতে হয়। তিসি গাছছ ফুল ঝার্রে পড়তত শুরু করল্লে ব! দানা পুষ্ট হতে সমস্যা দেখা দিলে বোরন ও মলিবড়েনাম সার গাছের পাতায় শ্প্রে করতে হর়। তিসির আশ উৎপাদন বাড়াতে হলে নাইটোজেন সারের পরিমাণ কিছুুটা বাড়িয়ে দিতে হয় যাতে গাছ দ্রত লম্বা ছয়।

万िज 88: তিসি

সূর্यমুभীত্ত সার প্রক্যেগ

সারের নাম	সারের পরিমাণ/শতক
ইউরিয়া	৬৮० গ্রাম
টিএসপি	800 গ্রাম
এমপি	৩২০ গ্রাম
জিপসাম	$\bigcirc \times 0$ গ্রাম
দস্ত্রা সার	¢0 গ্রাম
বোরার্স	80 গ্রাম

 ও বোরন প্রয়াগ কর্রে হয় ।!

প্রয়োগ পদ্ধতি

3. অর্ধেক ইউরিয়া ও অন্যান্য সার জমি প্রস্তুতের সময় প্রয়োগ করতে হয়।
২. বাকি অর্ধেক ইউরিয়া বীজ বপনের 80 থেকে ৫০ দিন পর পার্শ্ব প্রয়োগ করতে হয়। সূর্যমূখী গাছে সুষম সার না দিলে গাছের কাঠামো শক্ত হ্য় না ফলে গাছ সামান্য বাতাসেই হেলে পড়ে এবং ফলন কম হয়।

জাত	$:$ কিরণী বা ডি এস - ১
ফলন	$: ৫$ থথকে ৭ কেজি/শতক
রোপণ দূরত্ব	$: ৫ 0 \times ২ ৫$ সেমি.
বীজ হার	$:$ ৬০গ্রাম/শতক
রোপণ সময়	$:$ নভেম্বর থেকে ডিসেম্বর
ফসল তোলার সময়	$:$ মার্চ থেকে এপ্রিল
পরিচর্যা	$:$ আগাছা দমন, সেচ ও ফসল সংরক্ষণ।

সূর্যমুখী গাছে ফুলে বীজ উৎপাদনে সমস্যা দেখা দিলে গাছের পাতায় বোরন স্প্রে করতে रয়।

সয়াবিনে সার প্রত়য়াগ

সারের নাম	সারের পরিমাণ/শতক
ইউরিয়া	১১O গ্রাম
টিএসপি	800 গ্রাম
এমপি	$\bigcirc 00$ গ্রাম
জিপসাম	২৮০ গ্রাম
দস্তা সার	৫० গ্রাম (প্রয়োজনে)
সোডিয়াম মলিবড়েনাম	২.৫ গ্রাম (প্রয়োজনন)

প্রয়োগ পদ্ধতি

সকল সার জমি প্রস্তুতের সময় প্রয়োগ করতে হয়।

জাত	সোহাগ, ব্যাগ, ডেভিস, লী - 98, ক্লার্ক - ৬৩। সোহাগ জাত বাং্লাদেশে উদ্ভাবিত এবং এর ফলন বেশি।
ফলন	- ৮-থকে ০০ কেজি/শতক
রোপণ দূরত্ব	$\bigcirc \bigcirc \times ৫$ সেমি.
বীজ হার	000 গ্রাম
রেপপণ সময়	ডিসেম্বর থেকে জাননুয়ারি


```
आडिकर्या : आञाइा पमन }3\mathrm{ ए्सन्न मश्वम्कף। .
```


內এ 8も：সয়াবিন।

সয়াবিন লিগ্যুম গোত্রের অন্তর্ডুক্ত গাছ বলেে এর শিকড়় নাই！়াজেনসমৃদ্ধ নডিউল তৈরি

 জন্য সয়াবিট্ন ফসয়ট ও পটাশ সার খুব তাংপর্যপ্রূর্ণ।

কুসুমফুলে সার প্রয়য়াগ

সারের নাম	সারর পরিমাণ/শতক
ইউরিয়া	৩২০ গ্রাম
টिএসপি	২৫০ গ্রাম
এ মপি	\90 গ্রাম
জিপসাম	\80 গ্রাম
দস্তা সার	$\bigcirc 0$ গ্রাম
বোরাঙ্স	80 গ্রাম

万িত্র 8৭: কুসুম ফুল।

প্রয়োগ পদ্ধতি

১. অর্ধেক ইউরিয়াসহ সব সার জমি প্রস্তুরের সময় প্রয়োগ করতে হয়।
২. বাকি অর্ধেক ইউরিয়া বীজ বপনের ৩৫ থেকে 80 দিন পর প্রয়োগ করতে হয়।

জাত
: সেফ-১, ডেমরা কুসুম ও এস-800
ফলন : : ৫ থেকে৭ কেজি/শতক
রোপণ দূরত্ব : $8 ৫ \times ৩ \circ$ সেমি.
বীজ হার : ১০0 গ্রাম/শতক
রোপণ সময় : নভেম্বর থেকে ডিসেম্বর
ফসল তোলার সময় : মার্চ থেকে এপ্রিল
পরিচর্যা : আগাছ: দমন, সেচ ও ফসল সংরক্ষণ।

বাললাদেশে তেল হিসেবে কুসুম ফুলের চাষাবাদ কম। তবে সুষম সার দিয়ে অধিক ফলন পাওয়া গেলে এর চাষ অর্থনৈতিকভাবে লাভজনক হতে পারে। ইদানীং ফুল হিসেবেও কুসুম ফুলের চাষাবাদ আকর্ষণীয় হচ্ছে। সুষম সার দিলে কুসুম ফুল বড় হয়, উজ্জ্qল হয় এবং স্থায়িত্ব বাড়ে।

চীনাবাদাম্ম সার প্রয়োগ

সারের নাম	সারের পরিমাণ/শতক
ইউরিয়া	১২০ গ্রাম
টিএসপি	$৩ ৯ ০$ গ্রাম
এমপি	$৩ 00$ গ্রাম
জিপসাম	$৩ 00$ গ্রাম
দস্তা সার	$৩ 0$ গ্রাম
জীবাণু সার	প্রস্ততকারকের সুপারিশ অনুযায়ী

প্রয়োগ পদ্ধতি

সব সার জমি প্রস্তুতের সময় প্রয়োগে করতে হয়।
জাত : বাসন্তী, মাহইচর, ত্রিদানা, ঢা-১, ঢা - ২, ঝিঙ্গা বাদাম
ফলন : ৭ থেকে ১০ কেজি/শতক
রোপণ দূরত্ব : $80 \times$ ऽ৫ সেমি
বীজ হার : ৪৫० গ্রাম
রোপণ সময় : নভেম্বর থেকে ডিসেম্বর

ফসল তোলার সময় : মার্চ থেকে এপ্রিল
পরিচর্যা
: আগাছ: দমন, গোড়া বাঁধাই ও ফ্সল সংরক্ষণ।
চীনাবাদাম চাষে জিপসাম সার এবং জীবাণু ইনোক্যুলামের ব্যবহার খুব উপকারী। যেহেতু বাংলাদেশে মূলত অনুর্বর চরাঞ্চলে চীনাবদামের চায হয় সেজন্য উচ্চ ফলন পেতে হলে ঊপযুক্ত মাত্রায় সার দিতত হয়। উচ্চ ফলনশীল জাতে সার অবশ্যাই বেশি দিতে হয়। তবে ঢাকা- ১ এর জন্য সার কিঘুটা কমিয়ে দিতে হয়।

fিত্র 8৮: ঠীনাবাদাম

 না, বাদামের অকার ছোট ছয়।

মাঠ ফসলে সার প্রয়োগ

পান চাষে সার প্রয়োগ

জাত : গাছপান বা টবে লাগানোর জাত
ফলন : গাছ প্রতি দৈনিক ১ থেকে ২ টি পাতা

সারের নাম	সারের পরিমাণ/প্রতি টবে/ডাম /গর্তে
কমরোস্ট গुँড়া	1000 গ্রাম
ইউরিয়া	800 গ্রাম
টিএসপি	000 গ্রাম
এমপি	200 গ্রাম

চিত্র ৪৯ : পান গাছ।
 কম হয়। পাতায় द্রুত্র পান বরর।

চারা রোপণের ১ থেকে ২ মাস পর থেকে প্রতিটি গাছছ প্রতি মাসে ৫০ থেকে ১০০ গ্রাম করে কেবল কমপোস্ট গুঁড়া দিলেই চলে।
রোপণ সময় : বছরের যে কোনো সময় গাছ পানের চারা লাগানো যায়।
ফসল তোলা : নিয়মিত।
পান গাছ থেকে নিয়মিত পাতা তোলা হয় বলে দীর্ঘ সময়ব্যাপী পুষ্টি উপাদানের সরবরাহ নিচিত করতে হয়। পানের গাছে রাসায়নিক ছাড়াও সরিষার খৈল ব্যবহার করলে পানের ঝাঁঝ বাড়ে ও গুণগত মান বাড়ে।
পরিচর্যা : আগাছা দমন, ফসল সংরক্ষণ ও খুঁটি মেরামত।

পঞ্চম অধ্যায়
 শাক- সবজিতে সার প্রয়োগ

শাক-সর্বিজি চাচে সার প্রয়য়ারের বিষয়টি গুরুত্বপূপ্ণ। সাধারণভাবে শাক-সবজি চাষে অনুম্মাদিত হারে সার প্রয়োগ করা হয় না। কৃষি কাজ্জের সাথে সরাসরি সম্পৃক্ত ব্যকক্তিবর্গ ছাড়াও অন্কে কম-বেশি শাক সবজি চায করে থাকেন।

চিত্র ৪০: নানা রকম শাক-সর্বজি

কাঙ : ডাओl, ফणু
শিকড় : মฺना, গাঙ্র

ফুল : ফুল কপিি, মিষ্টি কুমড়া

যেসব ক্ষেত্রে শাব-সবজি চাষের বিষয়টি গ্রহণযোগ্য সেগুলো নিচে উল্লেখ করা হলো।
ক. যার বাড়ির আভিনায় কিছু পরিমাণ ফাঁকা জায়গা রয়েছে;
খ. যার বাড়িতে एাঁকা ছাদ রয়েছে ;
গ. যিনি বাড়িতে টবে গাছ রাখেন ;
ঘ. यিনি নিয়মিত টাটকা সবজি-ফল খেতে চান ;
ঙ. यিনি বাজারে সবজি ফলে বিষ দ্রব্য ব্যবহার করা হয়েছে বলে সন্দেহে ভোগেন ;
চ. যিনি বাজারের সবজির মান বা স্বাদ কম বলে মনে করেন ;
ছ. यিনি সবজি-ফল চাষে আনন্দ বোধ করেন ;
জ. যার শাক-সবজি ও ফুল-ফল চাষে আগ্রহ ও অভ্যাস রয়েছে ।

১।সাধারণ বিষয়াবলী

শাক-সবজি এবং ফুল ও ফলের জমিতে সার প্রয়োগের ক্ষেত্রে সাধারণ নিয়মের পরিবর্তে বিজ্ঞানভিত্তিক নিয়ম অনুসরণ করা প্রয়োজন। নিচে এ সম্পর্কে সংক্কেে আলোচনা করা হলো।
পট মিপ্সার তৈরি : আজকাল বাড়ির আঙিনায় বা ছাদে পটে বা টবে বা বড় ড্রামে ফুলফল এমনকি শাব- সবজির চাষ বাড়ছে। এই পট কালচারের প্রধান ৩টি পদ্ধতি হচ্ছে :

ক. গাছের ধরন অনুসারে পট বা টব অথবা ড্রাম মনোনয়ন ;
খ. পট মিজ্সচার তৈরি ও পট পরিপূরণ ;
গ. চারা রোপণ ও পরিচর্যা।

পট মিজ্সার তৈরির প্রধান পদ্ধতিগুলো এখানে উল্লেখ করা হলো।
ক. দো-আঁশ মাটি সং্গ্রহ, শুকরো ও গুঁড়া করে চেলে নেওয়া (০.৫ থেকে) সেমি. চালুনি ব্যবহার করা যায়)।
থ. অর্ধেক পরিমাণ মাটি এবং অর্ধেক পরিমাণ পচা গোবর অথবা ১০ কেজি মাটিতে ৫০০ গ্রাম কমপোস্ট গুঁড়া মিশানো।
গ. পটের তলায় ৩ থেকে ৫ সেমি. স্তরে ইটের খোয়া দিয়ে তার উপর পট মিক্সার ভর্তি করা।

ঘ. পটে পানি দিয়ে ১ থেকে ২ সপ্তাহ রেখে দেওয়া, তারপর চারা রোপণ।
এখানে উল্লেখ্য, পট মিজ্পারে কমপোস্ট গুঁড়া ব্যবহার করলে তাতে রাসায়নিক সার দেয়ার দরকার নেই। তবে গোবর ব্যবহার কর্রলে তাতত নির্ধারিত মাত্রায় রাসায়নিক সার দিতে হয়। পটে বা টবে পানি নিষ্ষাশনের ব্যবস্থা থাকতে হয়।

চিত্র ৫১ : পটটমিশ্রণ তৈরি।

টব ম!tি \in সার্রর মিশ্রc:
চিভ ৫২: পলিবাগা, সাদা ও টবে বীজ বপন।

২। শাক-সবজিতে সার প্রয়োগ

প্ঁঁই শাক ও লাউ-কুমড়ায় সার প্রয়োগ

জাত : পুঁই শাক সবুজ ও লাল;
লাউ-কুমড়া : আগাম দেশি লাউ ও মিষ্টি কুমড়া;
ফলন : ১৫০ থেকে ১৮০ কেজি প্রতি শতকে বা ৫-৭ কেজি/গাছ

সারের পরিমাণ	সারের পরিমাণ/শতক	প্রতি গাছে
কমপোস্ট গুঁড়া	২০০০ গ্রাম	৭৫ গ্রাম
ইউরিয়া	৫৫০ গ্রাম	২০ গ্রাম
টিএসপি	২৫০ গ্রাম	৯ গ্রাম
এম পি	$৩ 00$ গ্রাম	$১>$ গ্রাম
জিপসাম	২৫০ গ্রাম	৯ গ্রাম

প্রতি শতক জমিতে গাছের সংখ্যা ২৭টি।
জমি প্রস্তুতের সময় সার প্রয়োগ করতে হয়। কেবল ইউরিয়া দু'ভাগ করে প্রথম ভাগ জমি প্রস্তুতের সময় এবং দ্বিতীয় ভাগ বীজ/চারা রোপণের ৩o থেকে 80 দিন পর ব্যবহার করতে হয়।

পরবর্তীকালেও ফ্সলের অবস্থা ভাল থাকলে প্রতি শতকে আরও 800 গ্রাম বা প্রত়ি গাছে ১৫ গ্রাম ইউরিয়া ব্যবহার করা যায়। তবে চারা গজানোর পর প্রতি গাছে ১৫ দিন পর পর ৫০ থেকে ১০০ গ্রাম কমপোস্ট গুঁড়া ব্যবহার করলে রাসায়নিক সার ব্যবহার করার দরকার হয় না।

রোপণ দূরত্ব : সারি থেকে সারি ১৫০ সে মি. গাছ থেকে গাছ ১০০ সে মি.
রোপণ সময় : পুঁই শাক - মে কোনো সময় লাগানো যায়, তবে গ্রীঅ্ম ও বর্ষাকালে ফলन বেশি।
দেশী লাউ : জুলাই মাস থেকে শুরু করে নভেম্বর মাস পর্যন্ত বীজ রোপণ।
মিষ্টি কুমড়া : অক্টোবর মাস থেকে শুরু করে জানুয়ারি মাস পর্যন্ত বীজ রোপণ করা যায়।

চিত্র ৫৩: পুই শাক।
প্রুই শাকের প্রকৃত ফলন হচ্ছে এর পাতা ও কচি ডগা যা অনেকাংণ প্রয়োগকৃত সাররর পরিমাণ ও সুষমতার উপর নির্ডরশীল।

লাল শাক, ডাঁটা শাক, পালং শাক ও পাট শাকে সার প্রট়য়াগ
জাত : লাল শাক - আলতাপাটি + বারি লাল শাক-১, ডাটা-কাটীায়া, বাশ পাতা, সুরেশ্বরী, দেশী পান্নং শাক : সেভয় ও দেশী।

ফল্লন : প্রতি শতকে ৮০ কেজি।

চিত্র ৫৪: ডঁঁটা শাক।
ডাটা শাকে গাছছর চাহিদামর্ত সুষম সার ना দिलन গाएছ অन्म সময়ের মध্ধा ফুল এగে याয়। এজन্য শাক-সবজিতে নাইউাজ্রেন পরিমাণ বাড়িয়ে দিতে হয় এবং এর কিস্তি প্র্যোপ কররত হয়।

চিত্র ৫৫ : পালং শাক।
পালং শাক ম্বন্প बেয়াদি ফসল। गाটি থ্থকে পুষ্টি দ্রব্য পরিশোষণের জন্য কार्यकক নिকড় গडীরज कম। जाई সহজখ্গাপ্য সার এমনভাবে প্রয়োপ করতু হয় यাতে গাছ তা সহজ্র ও দ্রুত গ্রহণ কররত পারে। জমি প্রম্তুত করার সময়ই অধিকাংশ সার মাটিত্ মিশিয়ে দিতে হয়।

সারের নাম	সারের পরিমাণ/শতক
কমপপোস্ট গুঁড়া	২০00 গ্রাম
ইউরিয়া	900 গ্রাম
টিএসপি	৩৫০ গ্রাম
এম পি	২০০ গ্রাম
জিপসমম	১২০ গ্রাম

অর্ধ্ক ইউরিয়া এবং অন্যান্য সার জমি প্রস্তুতের সময় প্রয়োগ করতে হবে। বাকি অর্ধেক ইউরিয়া বীজ বপনের ৩o দিন পর প্রয়োগ করতে হয়।
রোপণ দূরত্ব : ছিতিয়ে বা সারিতে বপন সারি থেকে সারি ৩০ সেমি. গাছ থেকে গাছ ↔ সেমি.
বীজের হার : প্রতি শতকে 8 থেকে \& গ্রাম।
রোপণ সময় : লাল শাক : বছরের যে কোনো সময় বীজ বপন করা যায়।
ডাঁটা শাক : নভ্রেশ্বর থেকে এপ্রিল মাস। জাতভেদে অন্যান্য সময়ও রোপণ করা যায়।
পালং শাক : আগস্ট থেকে ডিসেম্বর।

চিত্র 『৬ : লাল শাক ও পাট শাক।
 এর মান কল যায়। এসব শাক্র দ্রুড বৃদ্ধির জন্য প্রচুর নাইটটজজেন দরকার, আবার
 জৈব সার দিলে শা:কর গুণগত মান ভাল হয়।

চীना শাক ఆ বাটি শাকে সার প্রয়াগ

সাররর নাম	সার্র পররমমা／শ৩ত
ইউরিয়	900 भाग
जिএসপপ	800 গ্｜lম
এম পি：	000 भु｜
जिপসাম	000 গ卜｜r

অর্ধ্রে ইউরিয়া ও অन্যাन্য সার জমি প্রস্তুতের সষয় এবং বাকি অর্ধেক ইউরিয়া চারা রোপণণর ৩০ হেকে ৩৪ দিন পর প্রয়োগ করতত হয়।

 Qबে আना अত্ত সুস্বদू শাক। ত্র ©
 সারসर मूषম म！র প्रताप कत़ज रख।

 बくटड そこう

BGQb：くッチ Mホ

 नखेगधन गांज

```
Gाज : म人 जाज
```



```
    গাছ থ\ে গাছ ৫O अमिম.
```


রোপা সময় : ড্ক্টাবর 氏্রে ড্রিল্ত্বর।

কলমী শাকক সার প্রয়োগ

সারের নাম	সারের পরিমা巾／শতক
কমপ্পোস্টু গুঁড়	＜000 51d
ই＇টরিয়া	৯০0 গ্রাম
টিএ্সপি	－co গ্র斤ম
এমপি	＜৭\％গ্রাম
জিপসাম	3005 gid

ই্টরিয়া সার 8 ভগা করর প্রথম ভগগ জমি প্রস্তুতের সময় এবং পরে প্রতি বার শাক কাটার
 জাত ：ক্যাং্কং বা গিমা কন্नমী
ফলन ：১৬০ থেকে ২০০ কেজি প্রতি শতকে（ 80 বর্গামিটोর） বা 8 থ্েে ब কেজ্জি প্রিত বর্গ মিটারে
রেপণ দূরত্ব ：সারি থেকে সারি 00 ભসি． গাছ থেকে গাছ ১৫ লেমি．
রোপণ সময় ：বচ্রের যে কোরনা সময় বীজ রোপণ বা কাটিং রোপণ করা যায় তবে গ্রীঅ্ম ও বর্ষাকারল ফল্লন বেশি रুয়।
ফमল ত্তালা ：এক बৌসুহম থেকে 8 টি কাটিং।

লেটুস，পেঁয়াজ ও গাজ্র সার প্রয়োগ

ইউরিয়া সার ২ ভাগ করে ১ ভাগ জামি প্রস্তুতের সময় এবং দ্বিতীয় ভাগ বীজ বপনের ২০ থেকে ২৫ দিন পর প্রয়োগ করতে হয়। অন্যান্য সার জমি প্রস্তুতের সময় প্রয়োগ করতে एয়

চিত্র ৫৯ : গাজর, লেটুস ও পেঁয়াজ
সালাদের জন্য জন্মানো লেটুস, গাজরর ও প্ֵুয়াজের জন্য জমিতে পর্যাপু নাইট়াজ্রে ও জিপসাম দিতে হয়।

জাত	সব জাত
एनन	১০০ থেকে ১৩০ কেজি (প্রতি শতরক) সারের পর্তিমাণ (প্রতি শতকে)
ররাপণ দূরত্ব	সারি থেকে সারি ২৫ সেমি. গাছ থেকে গাছ ৬ সেমি

```
রোপণ সময় ：আগস্ট রেকে ডিসেম্বর
ফসল তেলা ：নভ্রে্বর থেকে এপ্রিন্न
পর়ির্যা ：आগाছা দমন，जেচ \(ও\) মাটি নরম রাখা।
```

গাজরের গাছ घन হয়় গের্লে ছোট ছোট গাজর তুলে খাওয়া যায় বা বাজারে বিক্রি করা যায়। এতে ড্মনান গাজ্র আরও বড় হতয়ার সুযোগ পায়।

মূলার জমিভ্ত সার্ প্রতয়াগ

সারের নাম	সারের পর্রিম／শতক
ক্মপোশ্ট গুঁড়	2000 গ্রlম
ইউরিয়া	১১00 গ্রাম
דিএর্সপি	৩00 গ্রাম
\⿴囗⿰丿丨 \}	৩৫0 গ্রাম
জ্রিপাম	800 ग्राম

एिত फ०：घूला।
 मिपन মূলার ফलन ভাল रয়।

ইউরিয়া ব্যতীত সব সার জমি প্রস্তুতের সময় এবং ইউরিয়া সার তিন ভাগ করে বীজ বপনের ২০ দিন, ৩৫ দিন এবং ৫০ দিন পর প্রয়োগ করতে হয়। জমিতে সুযোগমতো ছাই দিতে হয়।

জাত : তাসাকি সান পিংকি, বারি মূলা-২, মিয়া সিগে, মিনো আল্লি, লাল বোম্বাই
ফলন : প্রতি শতকে ৩০০ থেকে ৩৩০ কেজি
রোপণ দূরত্ব : সারি থেকে সারি ৫০ সেমি. গাছ থেকে গাছ ২৫ সেমি.
বীজ হার : প্রতি শতকে ২০ গ্রাম
রোপণ সময় : সেপ্টেম্বর থেকে নভেম্বর মাস পর্যন্ত বীজ বপন করা যায়।
ফ্সল তোলা : অক্টোবর থেকে মার্চ। তাসাকি সান মূলা ডিসেম্বর পর্যন্ত বপন করে এপ্রিল পর্যন্ত তোলা যায়।
পরিচর্যা : আগাছা দমন, উপরি সারপ্রয়োগ, শাক গাছ তোলা, সেচ ও ফসল সংরক্ষণ।

ফুলকপি, ব্রোকোলি

সারের নাম	সারের পরিমাণ/শতক
কমপ্পাস্ট গুড়া	$২ 000$ গ্রাম
ইউরিয়া	2000 গ্রাম
টिএসপি	900 গ্রাম
এমপি	$৬ 00$ গ্রাম
জিপসাম	800 গ্রাম
বোরাজ্স	80 গ্রাম
সোডিয়াম মলিবডডট	২.৫ গ্রাম

অর্ধেক ইউরিয়াসহ সব সার জমি প্রস্তুতের সময় এবং বাকি অর্ধেক ইউরিয়া চারা রোপণের ৩০ দিন ও ৫০ দিন পর দু’বারে প্রয়োগ করতে হয়।

জাত : সব জাত
ফলন : প্রতি শতকে ১৫০ থেকে ২০০ কেজি
রোপণ দূরত্ব : সারি থেকে সারি ৭০ সেমি. গাছ থেকে গাছ ৫০ সেমি.
রোপণ সময় : সেপ্টেম্বর থেকে নভেম্বর। তবে বাঁধাকপি জাতভেদে জানুয়ারি পর্যন্ত রোপণ করা যায়।

ফসল তোলা ：নভেম্বর থেকে মার্চ
পরিচর্যা ：আগাছা দমন，সার প্রয়োগ，সেচ প্রদান，রোগ ও পোকা－মাকড় দ亠न।

万িত্র ৬১：ফুলকপি।

চিত্র ৬২：বাঁধাকপি।

বাঁধাকপি

সারের নাম	সাররর পরিমাণ／শতক
ক্মর্পাস্ট গুঁড়া	2000 গ্রান
ইंউরিয়া	১২০0 গ্রাম
টৈএসপি	४00 গ্রাম
এরপপি	－¢0 গ্রাম
জিপসাম	800 গ্রlম
বোরাক্স	80 গ্রাম
नোডিয়াম মলিবড়ে	২．৫ গ্র斤ম

অর্ধিক ইউউরিয়াসহ সব সার জমি প্রস্তুতের সময় এবং বাকি অর্ধক ইউউরিয়া চারা রোপণের ৩০ দিন ও ৫০ দিন পর দুবারে প্রয়োগ করতেত হয়।

$$
\begin{aligned}
& \text { জাত : কেকে ক্সস, এটলাস-৭০, প্রভাতি, ড্রামহেড } \\
& \text { ফলन : ৩৬৫ থেকে } 800 \text { কেজি/শতক } \\
& \text { রোপণ দূরত্ব : সারি থেকে সারি ৭৫ সেমি. } \\
& \text { গাছ থেকে গাছ ৬০ সেমি. } \\
& \text { ররাপণ সময় : সেপ্প্ব্্বর থেকে নভেম্বর মাস। }
\end{aligned}
$$

ফসল তোলা : নভ্ভেম্বর থেকে মার্চ
পরিচর্যা : আগাছা দমন, সার প্রয়াগ, সেচ প্রদান, রোগ ও পোকা-মাকড় দমন।

লাউ, চাল কুমড়া, মিষ্টিকুমড়া, শসা, ए্কোয়াশ, ক্ষিরাতে সার প্রট্য়াগ

চিত্র ৬৩: মিষ্টি কুমড়া।
জমিতে মিষ্টি ক্যুफ़ার বীজ রাপণণর পৃর্বে জৈব s রাসায়নিক সার মাদায় ষিশিয়ে নিতত হয়। পরবতীকাল ইউরিয়া

চিত্র ४৪: ঢাল কুমড়া।
(চালকুমড়া গাঢছ ফন্নन বৃদ্ধির জন্য গাছে প্রচুর পটাশ দিতে হয়। বীজ রোপ্ণের মাদায় মৌলিক সার ફিসেবে সুযম সার দিতে হয়।

ইউরিয়া ব্যতীত সকল সার জমি প্রস্তুতের সময় রোপণ গর্তে এবং ইউরিয়া ৩ ভাগ করে বীজ/চারা রোপণের ২৫ দিন ও ৬০ দিন পর ৩ বারে প্রয়োগ করতে ছয়।

জাত : সব জাত
ফলन : 000 কেজি প্রতি শতকে
রোপণ দূরত্ব : সারি থেকে সারি ৩০০ সেমি.
গাছ থেকে গাছ ১০০ সেমি.
প্রতি শককে ১৪টি গাছ।
রোপণ সময় : নাউ আগস্ট থেকে অক্টোবর চাল কুমড়া, শসা, ক্ষিরা, মার্চ থেকে মে
মিষ্টি কুমড়া ও স্কোয়াশ ডিসেম্বর থকে জানুয়ারি
ফসল তোলা : চারা বা বীজ রোপণের ২ থেকে ৩ মাস পর থেকে \& মাস পর্যন্ত।
শিম, বরবটি, মটরশুঁটিতে সার প্রয়োগ

সারের নাম	সারের পরিমাণ/শতক
কমপোস্ট গুঁড়া	0000 গ্রাম
ইউরিয়া	$১ ২ ০$ গ্রাম
টিএসপি	800 গ্রাম
এমপি	$৩ 00$ গ্রাম
জিপসাম	$২ 00$ গ্রাম
দস্তা সার	$৩ 0$ গ্রাম
বোরাব্স	80 গ্রাম

সব সার জমি প্রস্তুতের সময় প্রয়োগ করতে হয়।
জাত : সব জাত
ফলन : 8৫ থেকে ৮০ কেজি (প্রতি শতকে)
রোপণ দূরত্ব : সারি থেকে সারি ১৫০ সেমি. গাছ থেকে গাছ ১০০ সেমি. মটটর শুঁটি ৭০ সেমি×২০ সেমি.
রোপণ সময় : জুলাই থেকে নভেশ্বর।
ফসল তোলা : বীজ বপন বা চারা রোপণের দুই থেকে আড়াই মাস পর
পরিচর্যা : আগাছা দমন, মালচিং, সেচ 3 ফসল সংরক্ষণ।
শিম গাছে লোহা বা ম্যাগনেশিয়ামের ঘাটতি দেখা দিলে নির্দিষ্ট সার স্প্রে করতে হয়।

চিত্র ৬৫ : শিম।

শिমগাছ निগুম গোত্রের অণ্তডুক। এর শিকড়ে নাইট্রেজ্জেন গুটি টৎপাiিত ইয়। এজना এर নাইটোজেন সাররর চাशিদা ক্ম। কিত্তু লিম মািি থেকে অন্যানা পুট্টি প্রচুর পরিমাণে গ্রহণ ক<র। लिম গাছ্র পীতায় লোহ মাঙ্গনিজ ও ম্যাগनেশিয়ামের অजাবে হলদ্গ জাनिিা বা जাইরাস রোগের লক্ষণের মতো দেখায়। তাই এসব ঊপাদানের ঘাটতি কেখা দিলে গাছছ নির্দিষ্ট সার শ্প্র কর্ত হয়। সিম গাছছ আগাম ফুन उ एन्न ধরাত় হল্ল সুষম হারর কम<্টे माর প্রয়োগ কর্তে হয়।

 চাহিনা কম। কিন্তু প্রাচুয় ফসফেটট, প্তিশ 3 গৌণ উপাদান সার দিত্ত হয়।

করলা, ঝিঙ্গা, চিচিঙ্গা, ধুন্দুল ও কাকরোরল সার প্রয়াগা

সারের নাম	সারের পরিমাণ/শতক
কমেপাশ্ট গুঁড়\|	र०00 গ্রাম
ইউরিয়া	500 S্राd
টिএসপি	800 গ্রাম
এমপি	800 গ্राম
জিপসাম	000 গ্রাম
ররাব/T	80 গ্রাম
দস্তু সার	80 গ্রাম

চিত্র ৬৭: করলন
করলার উচ্চ ফলন পেতে হাল মাদায় ঢজেব সারসহ সুষম সার প্রয়োগ করতে হয়।

ইউরিয়া ব্যতীত সকল সার জমি প্রস্তুের সময় (রোপণ গর্ত) এবং ইউভিয়া ৩ ভাগ করে বীজ/চারা রোপণের 00 দিन 8৫ দিन 3 90 দিन পর প্রत়াগ করढ্ত रয়।

জাज : সব জ্ञু
ফलन : গ্গाए প্রज ২৫० बেজি
রোপে দৃরত্ব : সারি থেকে সারি ২০০ সেমি.
গাছ খ্থে গাছ ১৫০ ハেমি.
(প্রত শ্তক ১৪টি গাছ)
রোপণ সময় : ফেব্রুয়ারি থেকে জমির উচতার্ডে জুন মাস পর্যন্ত বীজ বা ঢারা রোপণ করা যায়।

ফসল তোলা : চারা রোপণ বা বীজ রোপণের ২ থেকে৩ মাস পর নিয়মিতভাবে ফসল সংগ্রহ করা যায়।
পরিচর্যা . : ঝাড় দেওয়া, আগাছা দমন, সেচ ও ফসল সংরক্ষণ।

চিত্র ৬৮ : ঝিজ্গা।
बिফ্গা বীজ রোশ্ণণর মাদায় সুষম সার নा দিলে উচ্চ ফলন आশা করা য়ায় ন।। অनाান্য সারের তুলনায় নাইফাজেন সারের পরিমাণ বেশি হয়ে গেলে বিঙ্গার স্বাদ ও গুণণগত মান বিনষ্ট হয়।

চিত্র ৬৯ : চিচিঙ্গ।
চিচিঙা গাছের মাদায় নাইট়াজেন 3 एসফর্রাস সার সুষম হারে না দিলে ফूল ও ফলन ঔৎপাদন বিলম্বিত एয়

ঢেঁড়শ ও চুকাইয়ে সার প্রত়োগ

সারের নাম	সারের পরিমাণ/শততক
ক্মপপাস্ট গुড়\|	२०00 গ্রাম
ইউরিয়া	৬¢0 গ্রাম
টিএসপি!	<00 গ্রাম
এমপি	800 গ্রাম
জিপসাম	২৫০ গ্রাম
দস্তা সার	$\bigcirc 0$ গ্राম
বোরাক্র	80 গ্রাম
লোভিয়াম মলিবডেট	२.৫ গ্রাম

চিত্র ৭২: দুবাইর বা চুকুর্র।

 কिन्তु প্রळ্যোগ কड:

অধিক ইউরিয়াসহ অন্যান্য সার জমি প্রস্ত্রুতের সময় এবং অন্যান্য সার বীজ বপনের ৩০ দিন ও ৫০ দিন পর ২ বারে প্রয়োগ করতে হয়।

জাত: সকলজাত
ফলন : প্রতি শতকে ৫০ কেজি
বীজ হার : ১৫ থেকে ২০ গ্রাম
রোপণ দূরত্ব : সারি থেকে সারি ৭০ সেমি. গাছ থেকে গাছ ৩০ সেমি

রোপণ সময় : সারা বছরই রোপণ করা যায় তরে গ্রীষ্ম ও বর্ষাকালে ফলনন বেশি।

ফসল তোলা : বীজ বপনের দেড়-দুই মাস পর। তবে চারা কিছুটা বড় হওয়ার পর থেকক চুকাই পাতা তোলা যায়।
পরিচর্যা : আগাছা দমন, সেচ ও एসল সংরক্ষণ।

টমেটো গাছছ সার প্রয়োগ

সারের নাম	সারের পরিমাণ/শতক
কমপোস্ট গুঁড়া	0000 গ্রাম
ইউরিয়া	2000 গ্রাম
টিএসপি	१৫० গ্রাম
এমপি	৮৫0 গ্রাম
জিপসাম	৫00 গ্রাম
বোরাব্স	80 গ্রাম
সোডিয়াম মলিবডেট	र.৫ গ্রাম

অর্ধেক ইউরিয়া এবং সব সার জমি প্রস্তুতের সময় প্রয়োগ করতে হয়। বাকি অর্ধেক ইউরিয়া সার চারা রোপণের 80 এবং ৮৫ দিন পর ২ বারে প্রয়োগ করতে হয়।

জাত : মানিক, রতন, বাহার, পরি টুমেটা-২, বারি টমেটো -৩
ফলন : ২৭০ থেকে ৩২০ কেজি/ শতক
রোপণ দূরত্ব : সারি থেকে সারি ৫০ সেমি.
গাছ থেকে গাছ ৩৫ সেমি.
রোপ্প সময় : সেপ্টেম্বর থেকে নভেন্মর, ফেব্রুয়ারি (গ্রীষ্মকালীন) মাস পর্যন্ত চারা রোপণ করা যায়।

ফসল্ল তোলা : নভ্ভে্বর থেকে এপ্রিল
পরিচর্যা : আগাছা দমন, গাছ बেঁধে দেওয়া, সেচ ও एসন্ন সংরক্ষণ।

卋ত १३：টিহটো।

টি্মটটট গাছছর জন্য পটাশ সার খবই তাৎপর্যপূর্ণ। জমিত চিকমত পটাশ সার দ্রিলে পাতায় দাগ इয় না，ফলের পাচন রোগ কম इए़ এবং ফল্ল ফোটে যয় না। টমেত্রে জমিতে মनिবডডোম 3 বোরন সার দিলে ফलनख मान উन्नज रग़। फलऩर दर्ष सूदई উ島न ₹़।

万ত 90 ：बোন
ব্বগুন नাইটাঁ্ন，ফসফফট s পটাশ সার
 निर्युत्रिত थारक। ফলন বেশি হয়। উত্তরা जाजजর एनन বেশি বरन ईमनाমপু＜ो ज ศिংनाथ खগুन？চেয় সা＜＜পরিমাণ বেকি मिढ़ र्य।．

বেগুন গাছছ সার প্রয়োগ

অর্ধ্ধক ইউরিয়া এবং অন্যান্য সার জমি প্রস্তুতের সময় এবং বাকি ইউরিয়া ২ ভাগ করে চারা রোপণের ৫০ দিন এবং ৭৫ দিন পর প্রত়োগ কর্তে হয়।

জাত ：উফশী উত্তরা，শুকতারা，जারাপুরী，সুফল্ন।
অন্যান্য জাত ：শিংনাথ，বুমকো，বটবটিয়া，মি．নৌধুরী，তাল বেগুন，বালিশ， বারোমানি，চল্লিশা
ফলन ：২৪০ থেকে ২৭০ কেজি／শতক
রোপণ দূরত্ব ：সারি থেকে সারি ৮০ সেমি． গাছ থেকে গাছ ৫০ সেমি．
রোপণ সময় ：প্রধান মৌসুম－অক্টোবর থ্থেক 心িসেম্বর মাস পর্যন্ত চারা রোপণ করা যায়। খরিপ মৌসুম্মের জাতের বেগুন জমিতে বা টবে চাষ করলে কেবল কমপপাশ্ড গুঁড়া সার（গাছ প্রতি সপ্তাদহ ৫০ গ্রাম） ব্যবহার করললেই চলল।
উল্লেথ্যযে，বারোমাসি বেগুন，ডিম বেগুন এবং অन্যান্য দেশীয় জাতের বেগুন মার্চ মাস পর্যন্ত চারা রোপণ করা যায়।
ফসল তোলা ：চারা রোপ্েণর দুই আড়াই মাস পর থেকে বেগুন তোলা শুরু হয়।
পরিচর্যা ：আগছা দমন，সেচ ও ফ্সল সংরক্ণণ।
মানকচু ও ওল কচু গাছ্ সার প্রয়োগ

সারর নাম	সারের পরিমাণ／শ｜৩ক
কমপোস্য গুঁড়া	3040 গाग
ইউরিয়া	boo গ্রাম
টিএসপি	ง৭० গ্রাম
এমপি	080 ⿹勹䶹
জিপসাম	000 গ্রাম

চারা রোপণণর পর একই পরিমাণ সার অক্টিবর ↔ মাচ মাসে দু’বার দিতে হয়।

জাত ：সব জাত

রোপণ দূরত্ব ：সারি থেকে সারি ১৫০ সেমি． গাছ থেকে গাছ 200 সসমি． （প্রতি শ丁কক २৭টি গাছ）
চারা রে।পণ সময় ：জ্রন থেকে জুলাই

চিত १৪ : মানকতু।
বিভিন্নজাতের কচু যেমন মানকচু, ওলকচু, भানিকচু, মুখীকচু, পঞ্চমুথীকচু প্রড্তিত্ত ফলন অনুসারে সাররর পরিমাबেও পাথর্ক্য হয়। অবে সকল ক্ষেত্রেই উচ ফলন পেতে হরে পর্যাপ্তু সুফম সার প্রয়োগ করতে হয়। নাইটোজ্জন সার কি.স্তিতে প্রত়াগ করা जাল।

পেঁয়াজ গাছে সার প্রয়াগ

সারের নাম	সারের পরিমাণ/শতক
ক্মপোস্ট গুঁড়\|	3000 গ্রাম
ইউরিয়া	৬৫० গ্রাম
টিএসপি	৫00 গ্রাম
এরপি	< 00 গ্রld
জিপসাম	$8<0$ গ্রাম

বীজ বপন/চারা রোপাের ২৫ দিন এবং 80 দিन পর প্রেয়াগ করূঅ रয়।

জাত : বারি প্ঁয়াজ-১ ফরিদপুরী, তাহিরপুরী, রেড ক্লিওল, বোম্বাই, করাচী, রেড ট্রিিকানা

ফলन : ৫০ থেকে ৭০ কেজি/শ্রু
বীজ ञाর : र० গ্রাম/শতক
রোপে দূরত্ব : সারি থেকে সারি ২০ সেমি. গাছ থেকে গাছ b সেমি.

চিত্র 9৫ : প্রেঁয়াজ।
প্ৰেয়াজের উচ্ক ফলনপ্রাপ্তির জন্য পটাশ
ও জিপসাম ચুব গুরুত্বপূর্র।

চিত্র ৭ঁ: রসুন।
রসুহের উচ ফলন প্রাপ্তুর জন্য \জব সারসহ সুযম সার বিলিষ ब<র গ্গীপ উপাদান্র পুষ্টি খুবই তাংপর্যপূণ। fিকমত পটাশ সার দিলে রসুরনর আকার বড় হ হ़

রোপণ সময় : সেপ্টেম্বর থেরে ডিসেম্বর পর্যন্ত বীজ বপন বা চারা রোপণ করা যায়।
ফসল তোলা : ডিসেস্বর থেকে এপ্রিল
পরিচর্যা : আগাছা দমন, সেচ ও ফসল সংরক্ষণ।
উল্লেখ্য, পেঁয়াজে সঠিক পরিমাণে জিপসাম সার প্রতয়াগ় কর<লে পেয়াজজে ফলন বাভ়ে, ঝাঁঝ বা!়̣ ও গুণগত মান উন্নত হয়।

রসুন	
সারের নাম	সাররর পরিমাণ/শতক
কমপোস্ট গুঁড়া	২০০০ গ্রাম
ইউরিয়া	৬৫० গ্রাম
টিএরপি	800 ड्राय
এমপি	৫OO গ্রাম
জিপসাম	र৫० গ্রাম

অর্ধ্বক ইউরিয়া এবং ও অন্যান্য সার জমি প্রস্তুতের সময় এবং বাকি অর্ধেক ইউরিয়া ২ বারে বীজ রোপণের ৩০ দিন ও৫৫ দিন পর প্রয়োগ করতে হয়। জমিতে নিয়মিত ছইই দিতে হয়।

জাত : ছোট, বড় ও এককোষী।
ফলন : প্রতি শতকক 80 থেকে ৬০ কেজি।
বীজ হার : ১.৫কেজি
রোপণ দূরত্ব : সারি থেকে সারি ২৫ সেমি. গাছ থেকে গাছ ছোট গাছের কেত্রে ১০ সেমি. এবং বড় গাছের ক্ষেত্রে ১৫ সেমি
রোপণ সময় : অক্টোবর থেকে নভেম্বর পর্যন্ত বীজ রোপণ করা যায়।
ফসল তোনা : ডিসেম্বর থেকে এপ্রিল।
পরিচর্যা : আগাছা দমন, গোড়ায় মাটি দেওয়া, সেচ ও ফসন সংরক্ষণ। উলল্লথ্য, রসুন্নের জমিতে সুষমভাবে জিপসাম সার দিলে রসুন্নে ঝাঁঝ ও গন্ধ বাঙ্ডে, ফলন বেশি হয় এবং এর গুণগত মান বাড়ে। পটাশিয়ামের ঘাটতি হলে রসুন অকালে শুকিয়ে याয়।

মরিচ

সারের নাম	সারের পরিমাণ/শতক
কমপোস্ট গুঁড়\|	2000 গ্রাম
ইউরিয়া	৬৫০ গ্রাম
টিএসপি	800 গ্রাম
এমপি	800 গ্রাম
জিপসাম	২৫০ গ্রাম
দস্তা সার	৫O গ্রাম
বোরাক্ব	80 গ্রাম

অর্ধেক ইউরিয়াসহ সকল্ল সার জমি প্রস্তুণতর সময় এবং বাকি ইউরিয়া চারা রোপণের ৩০ দিন পর এবং ৬০ দিন পর দু’বারে প্রয়োগ করতে হয়।

জাত	: দেশীয় সকল জাত
ফল্নন	: প্রতি শতকে কাঁচা ৮০ কেজি
রোপণ দূরত্ব	: সারি থেকে সারি ৭০ সেমি.
	গাছ থেকে গাছ ৩ সেমি.

চিত্র ৭৭ : মরিচ
টবে বা ড্রাম্মে লাগালে বারোমাসী জাতের মরিচ গাছে প্রতি সপ্তাহে কেবল ৫০ গ্রাম কমপোস্টে গুঁড়া ব্যবহার করলেই চলে।

রোপণ সময় : নভ্যেম্বর থেকে ফেব্রুয়ারি পর্যন্ত বীজ বপন বা চারা রোপণ করা যায়। বর্ষাকালীন মরিচ মে মাস পর্যন্ত রোপণ করা যায়।

ফসল তোলা : চারা রোপণের দুই থেকে আড়াই মাস পর থেকে ৫ মাস পর্যন্ত।

এখানে উল্লেথ্য মরিচের জমিতে বোরন ও তামার অভাব হলে গাছের বৃদ্ধি বন্ধ হয়ে যায়, ফুল ঝরে যায় এবং রোগাক্রমণ বেড়ে যায়।

আদা

জাত: দেশী রংপুরী, জামাইকা ও চায়নিজ আদা, টেংগুরা
ফলন : \quad ० থেকে ৯০ কেজি/শতক

সারের নাম	সারের পরিমাণ/শতক
কমপোস্ট গুঁড়া	২000 গ্রাম
ইউরিয়া	৯00 গ্রাম
টিএসপি	৬০০ গ্রাম
এমপি	৫৫० গ্রাম
জিপসাম	৩৫০ গ্রাম
দস্তা সার	80 গ্রাম

ইউরিয়া ব্যতীত সকল সার জমি প্রস্তুতের সময় এবং ইউরিয়া ২ ভাগ করে বীজ রোপণের 80 দিন ও ৮০ দিন পর প্রয়োগ করতে হবে।

রোপণ দূরত্ব : সারি থেকে সারি ৫০ সেমি. গাছ থেকে গাছ ২০ সেমি.
বীজ হার : ১৫ কেজি কন্দ।
রোপণ সময় : মার্চ থেকে জুন মাস পর্যন্ত আদার বীজ রোপণ করা যায়।
ফসল তোনা : ৬ থেকে ৭ মাস পর থেকে ফসল তোলা যায়।
পরিচর্যা : আগছা দমন করে জাবড়া বা মালচিং দেওয়া, ফসল সংরক্ষণ। উল্লেখ্য, পরিমিতি পটাশ সার আদার ফলন বাড়ায়।

হনুদ ফসরে সার প্রয়োগ

জাত : পাটনাই সিন্দুরী, ডিমলা, হরিণ নলী, মহিষ বাট, আড়ানী
ফলন : প্রতি শতকে ৫০ থেকে ৭০ কেজি ।

চিত্র ৭b : আদা।
অদা একটি দौौ্ঘ ম্য়াদি एসन। আদা ćf.ত জাবড়া দেওয়ার আরে সমস্তু সা: খ্য়াগ করে নিতে হয়। এরপরও কেi• : দে দেওয়া হলে সার দেওয়ার পর শ্セ: ব ব্যবস্থ করতে হয় যারত প্রয়োগঙ:

সাররর নাম	সাররর পরিমাণ/শতক
কমপপোস্ট গুঁড়া	১OOO গ্রাম
ইউরিয়া	৬৫० গ্রাম
টিএসপি	800 গ্রাম
এমপি	৫OO গ্রাম
জিপসাম	৩৫O গ্রাম
দস্তা সার	80 গ্রাম

ইউরিয়া ব্যতীত সকল সার জমি প্রস্তুতের সময় এবং ইউরিয়া ২ ভাগ করে বীজ রোপণের $৩ 0$ দিন এবং ৭০ দিন পর প্রয়োগ করতত ছয়। বীজ বপনের পর তা জাবড়া দিয়ে ঢাকে লেয়ার প্রয়োজন হলে সমস্ত সার জমি প্রস্তুতের সময় প্রয়োগ করতে হয়।

রোপণ দূরত্ব : সারি থেকে সারি ৫০ সেমি.
গাছ থেকে গাছ ২০ সেমি.

বীজ হার : ১২কেজি
রোপণ সময় : মা্ড থেকে জুন মাস পর্যন্ত বীজ রোপণ করা যায়।
ফসল সং্গ্রহ : এক থেকে দুই বছর পর্যন্ত ফস্সল তোলা যায়।

ধনে ফসলে সার প্রত়োগ

জাত : বারি ধনে-১ দেশীয় সাধারণ জাত
ফলন : ছোট গাছ পাতা ১৫০ কেজি এবং বীজ উৎপাদন ১০ কেজি

fिज b-o: ধনে।

পরিবেশ বিষ্ঞান : সার ব্যবহার নির্দ্রশনা

সাররর নাম	সারের পরিমাণ/শতক
ক্মপোস্টে গুঁড়া	र०00 গ্রাম
ইউরিয়া	৬৫০ গ্রাম
টিএসপি	8২৫ গ্রীম
এমপি	৩৫O গ্রাম
জিপসাম	২৫০ গ্রাম
দস্তা সার	৫० গ্রাম

অর্ধেক ইউরিয়া এবং অন্যান্য সার জমি প্রস্তুতের সময়ে এবং বাকি ইউরিয়া দু’ভাগ করে বীজ বপনের ২৫ দিন ও ৫০ দিন পর প্রয়োগ করতে হয়।

বীজ হার : ২০০ গ্রাম
রোপণ দূরত্ব : সারি থেকে সারি দূরত্ব ২০ সেমি. গাছ থেকে গাছ দূরত্ব ৫ সেমি.
চারা অবস্থায় গাছ তুলে খাওয়া বা বিক্রি করা যায়।
রোপণ সময় : সেপ্টেম্বর থেকে ডিসেম্বর পর্যন্ত বীজ বপন করা যায়।
ফসল তোলা : বীজ বপনের মাসখানেকের মধ্যে সালাদের জন্য ধনিয়া গাছ তোলা যায়। বীজ পাকতে ৩ থেকে 8 মাস সময় লাগে।
পরিচ্যা : আগাছা দমন, চারা তোলা ও পাতলাকরণ, সেচ, ফসল সংরক্ষণ।

ষষ্ঠ অंध्याয়

ফল গাছে সার প্রয়োগ

১। ফन গাছে সার প্রয়োগের সাধারণ नীতিমানা

একাটি ফল গাছছর চারা অনেক দিন ধরে ফল উৎপাদন করে। তাই রোপণ থেকে শুরু
 সার প্রয়োগের ধাপগুল্লা নিচে উন্লেখ করা হলো।

ক. চারার রোপণ গর্তে সার প্র<্যোগ;
থ. চারা অবস্থায় সার প্রয়োগ;
গ. ফল ধরা অবস্থায় সার প্রয়োগ ।
সার প্রয়োগের সুবিধার জন্য ফল গাছের সার সুপারিশশর অধ্বিকাশ্শাকেতে একক গাছের ভিত্তিতে সার্রের পরিমাণ নিণ্য় করু তা উন্লেখ করা হয়েছে।
 ক্যপোম্ট গুঁড়া সার ব্যবহারের উপর খুবহ গুরুত্ব দিতে হয়।

২। সারের পরিমাণ ও প্রক্রোগ পদ্ধতি : বিভিন্ন প্রকার ফলগাছ్ প্রয়োগের জন্য সারের পরিমাণ ও প্রয়োগের নিয়ম সম্পরে সংক্ষেপে বর্ণনা করা হলে।
পেয়ারা গাছছ সার প্রয়োগ
জাত : কাজী পেয়ারা, পলি পেয়ারা, থাই পেয়ারা, সরুপকাটি কাঞ্চননগর, মুল্দুপুরী
ফলনন : প্রতি গাছে ৫ থেকে २০ কেজি
সারের পরিমাণ : গর্ত্ত বা টবে

भाরের নাম	সারের পর্রিমা/称/ब্ব
কसপপস্ট बैं	2000 9ी1
ইढत़য়ा	290 gु\|
जिィসপপ	880 গ्राम
งघপि	J00 গ্রTম
जिপসাম	200 श्राग

চারা রোপণের ২ থেকে ৩ মাস পর ২০০ গ্রাম ইউরিয়া এবং তারপর প্রতি মাসে ৫০ থেকে 300 গ্রাম করে কেবল কমপোস্ট গুঁড়া দিতে হয়।

গাছে ফল আসার পর नিম্নুপ সার দির্ত হ্য়（২ মাস পরপর）	
সার়র নাম	मাররत গরিমাচ
ক্মপ্রেশ্ট গুড়া	300 जाञ
ইট匕রিয়｜	80 গীম
ढि এসপि	＜0 গ斤／入
এูপি｜	20 STश

রোপ দৃরত্ব ：বড় ড্রাম আशবা সারি পেক সারি 3 গাছ খেকে গাছ ২ মিটlর।

forb：পোরা

 मिलে रेख।

পেঁপে গাছ সা প্যয়াগ

$$
\begin{aligned}
& \text { জাত : রাঁচি ব্র্ট্যেম, নউন ইউ - ১, নউন ইউউ-২। } \\
& \text { ফল. : গাए প্রতি ৪০ কেজি }
\end{aligned}
$$

সারের পরিমাণ（গর্তু／ড্রার্ম）

সারের নাম,	সাররর প্রারমণ／গর্ত／টব
কমপোস্ট গुঁড়া	2000 গ্রাম
ইউরিয়া	200 গ্রাম
টি এস পি	200 গ্রাম
এমপি	200 গ্রাম

万人

 করरত হয়। প্রেপ্ গাচ্ছ্র জন্য পটাশ 3 গৌণ পুষ্টি উপাদান খুবই তাৎপর্যপূর্ণ।

সার প্রয়োগের ২ সপ্তাহ পর চারা লাগাতে হয়। চারা রোপণের ২ থেকে ৩ মাস পর ১০০ গ্রাম ইউরিয়া ও ৫০ গ্রাম এমপি সার এবং ২০০ গ্রাম ছাই প্রয়োগ করততে হয়। গাছে ফুল আসার পর প্রতি মাসে নিম্নরাপ সার দিতে হয়

সারের নাম	সারের পরিমাণ/গাছ/দুই মাস
কমপোস্ট গুঁড়া	300 গ্রাম
ইউরিয়া	80 গ্রাম
টিএসপি	২৫ গ্রাম
এমপি	$৩ 0$ গ্রাম
বোরাঙ্স	২০ গ্রাম

রোপণ দূরত্ব : বড় ড্রাম বা সারি থেকে সারি ও গাছ থেকে গাছ ২ মিটার
রোপণ সময় : ফেব্রুয়ারি থেকে এপ্রিল মাস পর্যন্ত পেঁপের চারা রোপণ করা যায়।

লেবু, মান্টা, কমলা, কিনো গাছ্ সার প্রয়াগ

জাত : লেবু এলাচি, বীজ হীন লেবু, কাগজি লেবুসহ সব জাত
ফল : গাছ প্রতি ৫ থেকে ১০ কেজি।

সারের নাম	সারের পরিমাণ/গর্ত/টব
কমপোস্ট গুঁড়া	৫০০ গ্রাম
ইউরিয়া	১০০ গ্রাম
টিএসপি	৮০ গ্রাম
এমপি	৫০ গ্রাম

প্রতি মাসে গাছছর বয়সভেদে সারের পর়িমাণ (গ্রাম) প্রয়োগের জন্য

সারের নাম	গাছের বয়স (বছর)		
	২ বছরের কম	২ থেকে ৫	৫ বছরের বেশি
	$১ 00$	$১ ৫ ০$	২০০
টিএসপি	$৩ 0$	$8 ৫$	৫০
এমপি	$১ ০$	$১ ৫$	$২ ০$
জিপসাম	$১ ০$	$১ ৫$	২০

চারা রোপণেভ ৩ থেকে 8 মাস পর থেকে সার প্রয়োগ শুরু করতে হয়। কমপোস্ট গুঁড়া সারের পরিমাণ দ্বিগুণ করে দিলে পরবর্তী রাসায়নিক সার না দির্গেও চলে।

রোপণ দূনত্ব : সারি থেকে সারি ২ মিটার
গাছ থেকে গাছ ২ মিটার
রোপণ সময় : মার্চ থেকে জুলাই মাস পর্যন্ত চারা রোপণ করা যায়। পানি সেচ দিजলে অন্য সময়ও চারা লাগাননা যায়।

চিত্র ৮-: কমলা লেবু।

ডালিম গাছে সার প্রয়োগ

জাত : দেশী বেদানা
ফন্লন : 8 থেকে ৮ কেজি/গাছ/বছর।

সারের নাম	সারের পরিমাণ/গর্ত/ড্রাম
কমপোস্ট গুঁড়া	৫00 গ্রাম
ইউরিয়া	$2 ৫ 0$ গ্রাম
টিএসপি	200 গ্রাম
এমপি	$\searrow 00$ গ্রাম
জিপসাম	90 গ্রাম

চারা রোপণের ২ থেকে ৩ মাস পর হতে প্রথম বছর বা ফুল আসার পূর্ব পর্যন্ত প্রতি মাসে প্রতি গাছে নিম্নরাপ সার ব্যবহার কর্তে হয়।

সারের নাম	সারের পরিমাণ/গাছ
কমপোস্ট গুড়া	৫ গ্রাম
ইউরিয়া	$2 ৫$ গ্রাম
টिএসপি	গ্রাম
এমপি	গ্রাম

গাছে ফুল আসার পর বা দ্বিতীয় বছর থেকে প্রতি গাছছ প্রতি মাসে নিম্নলিখিত হারে সার প্রয়োগ কররে হয়।

সারের নাম	২ থেকে ৫ বছর	৫ বছরের বেশি
কমপোস্ট গুঁড়\|	৫০ থেকে ১৫০ গ্রাম.	১৫০ থেকে ২০০ গ্রাম
ইউরিয়া	১৫ থেকে ৩০ গ্রাম	৩০ থেকে 80 গ্রাম
बিএসপি	১০ থেকে ২০ গ্রাম	২০ থেকে ৩০ গ্রাম
এমপি	১০ থেকে ৩০ গ্রাম	৩০ থেকে ৫০ গ্রাম
ছাই	১০০ থেকে ২০০ গ্রাম	২০0 থেকে 800 গ্রাম

রোপণ দূরত্ব : সারি থেকে সারি ২০০ সেমি. গাছ থেকে গাছ ২০০ সেমি.
রোপণ সময় : য়ার্চ থেকে জুলাই মাস পর্যন্ত ডালিমের চারা রোপণ করা যায়। তবে পানি সেচ দিলে শুকনা সময়েও চারা লাগানো যায়।

কলা গাছে সার প্রয়োগ

জাত : অমৃতসাগর, মেহেরসাগর, সবরি, স্থানীয় জনপ্রিয় উন্নত জাত।
ফলন : ১৫০ কেজ্জি প্রতি শতকে বা ২০ কেজি/গাছ

সারের নাম	সারের পরিমাণ/গর্ত
কমপোস্ট গुঁড়া	900 গ্রাম
ইউরিয়া	800 গ্রাম
টিএসপি	$2 ৫ 0$ গ্রাম
এমপি	200 গ্রাম
জিপসাম	200 গ্রাম
দস্তা সার	80 গ্রাম
বোরাস	80 গ্রাম

fिভ b৫ : কन्ना গाছ।
কলার পটাশ চাহিদা খুব <েশি। সেজ্য্য কলার বাগানে পটাশ সারসমৃদ্ধ সুযম সার প্রয়াগ করতে रয়।

গর্ত্তে সার প্রয়োগের দুসস্তাহ পর চারা রোপণ করতে হয়।
রোপণ পরবর্তী সারের পরিমাণ প্রতি গাছে/বার্ষিক

সারের নাম	সারের পরিমাণ
কমপোস্ট গুঁড়া	৫00 গ্রাম
ইউরিয়া	800 গ্রাম
টिএসপি	২০০ গ্রাম
এমপি	২০০ গ্রাম
জিপসাম	১০০ গ্রাম

ইউরিয়া ব্যতীত অন্যান্য সার চারা রোপণের ৩ মাস পর প্রয়োগ করতে হয়। ইউরিয়া সার ৩ ভাগ করে চারা রোপণের 8 মাস, ৬ মাস এবং ৮ মাস পর প্রয়োগ করতে হয়।
দ্বিতীয় বছর সমপরিমাণ সার বছরে ২ বার সেপ্টেম্বর ও মার্চ মাসে প্রয়োগ করতে হয়। রোপণ দূরত্ব : সারি থেকে সারি ২৭০ সেমি.

গাছ থেকে গাছ ২৭০ সেমি. \quad শতকে ৫ থেকে ৬ টি গাছ
রোপণ সময় : সেপ্টেম্বর - অক্টোবর বা মার্চ থেকে এপ্রিল মাসে কলার চারা রোপণ করা যায়।

নারকেল গাছ্ সার প্রয়োগ

জাত : দেশী, মালয়েশিয়া কিং, ডুয়ার্, থাই ডুয়াফ

সারের নাম	সারের পরিমাণ/গর্ত
কমপোস্ট જुঁড়া	৫০০ গ্রাম
ইউরিয়া	১৫০ গ্রাম
টিএসপি	৬০ গ্রাম
এমপি	৮০ গ্রাম

গর্তে সার প্রয়োগের দুসপ্তাহ পর চারা রোপে করতে হয়।

চিত্র ৮৬ ：নারকেলের চারা রোপণ ও সার প্রয়েগা

রোপণ পরবর্তী সার প্রয়োগ			
	গাছছর বয়সভিত্তিক সারের পরিমাপ（গ্রাম）		
সারের নাম	১ বছরের কম	১থেকে ৫ বছুর	¢ বছররর বেশি
কমপোস্ট জুড়া	『0－300	200－800	c00－3000
ইউরিয়া	『0－300	200－200	200－400
টিএসপি	－0－80	৫०－२००	२00－800
এর্মপি	80－60	勺०－२८०	र80－800
জিপসাম	2 8 －80	80－300	300－2《0

চিত b-q: नाরকেল গাছ।
(একটি নারকেল গাएছ শক্ত কাঠাম্মা ও ন্যূনত্ম পাতা উৎপাদনের জন্য চারা রোপণ থেকেই সুযম সার প্রয়়াগ করতত হয়।)
এই পরিমাণ সার বছররর ফেব্রুয়ারি ও জুন মাকে প্রয়োগ করতত হহয়।
রোপণ দূরত্ব : ও থেকে b মিটার
রোপণ সময় : জুন থেকে সেপ্টেম্বর মাস পর্যন্ত চারা লাগাানা যায়।
আ!ুর্র
জাত : ব্লাক পার্ল, জাককাউউ, থাপসন, পুশা।
ফলन : প্রকি শত্ক ১০ থেকে ২০ কেজি।
প্রতি গাছু ১ থেকে ২ কেজি
গর্ত্র সার প্রয়োগ (বা বড় টবে) গর্ত ৬০ \times ৮০ x ৮০ সেমি.

সারের নাম	সারের পর্রিমাণ
কমপ্পেস্ট গুঁড়\|	১000 গ্রাম
ইউরিয়\|	200 গ্রाম
ढिএ	000 গ্রlম
এমপি	200 গ्रीম

গর্তে সার দেওয়ার ২ থেকে ৩ সপ্তাহ্ পর চারা রোপণ করতে হয়। চারা রোপণের 80 দিন ও ৮০ দিন পর গাছ প্রতি নিম্নরূপ হারে সার প্রঢ়োগ কররত হয়। কমপোস্ট গুঁড়া ৫০ গ্রাম, ইউরিয়া ১০ গ্রাম, টিএসপি ৫ গ্রাম, এমপি ৫ গ্রাম।
বয়সভেদে প্রতি গাছছ সার প্রয়োগ মাত্রা (গ্রাম)

সাররর নাম	গীছছর বয়স	
	১ থেকে '৩ বছর	\bigcirc বছর বা বেশ্
ক্মপোস্ট গুঁড়া	200-000	900-800
ইউরিয়া	80-500	$200-200$
টिथ्সপি	200-200	200-800
এমপি	80-500	200-200
জিপসাম	80-90	90-580

চিত্র ৮৮ : আঙ্রুর লতা।
আঙুর গাছু ফন্নन পাওয়ার জন্য ও মিষ্টি আঙুর ফলাননার জন্য ক্যালসিয়াম ও ম্যাগনেশিয়ামের সাথ্থে পটাশিয়ামের পরিমাণ, অনুপাত ও সুষমতা খুবই তাৎপর্যপূণ।

উক্তু সার বছরে ৩ বারে প্রয়োগ করতে হয়। অঙুর গাছের ডগা ছাঁটাইয়ের সময়ের তিত্তিতে সেপ্টেম্বর, ফেব্রুয়ারি ও মে মাসে এই সার প্রয়োগ করতে হয়।
রোপণ দূরত্ব : সারি থেকে সারি ২৫০ সেমি.

> গাছ থেকে গাছ ১৫০ সেমি.
> প্রতি শতকে গাছের সং্যা ১০ থেকে ১১ টি

রোপণ সময় : আবহাওয়াভেদে ফেব্রুয়ারি থেকে মে মাস পর্যন্ত চারা রোপপ করা যায়।

আনারস গাছছ সার প্রয়োগ

জাত : शনিকুইন, জায়েন্ট কিউ
ফলন : ‘প্রত্রি শতকে ১২০ থেকে ১৫০ কেজি

চিভ ৮৯: আনারস।
রসালো ও মিট্টি আনারসের জন্য পটাশসহ সুযম সার প্রয়োগ করতে হয়। নাইটেজজন সার বিস্তিতে প্রয়োগ কর্তে হয়। অপ্ৰু লক্ষণ দেখা দিভল আনারডস ম্যাগনেশিয়াম প্রয়োগ করডত হয়।

সারের নাম	সারের পরিমাণ (প্রতত শতকে)
কমপোস্ট গুঁড়া	$৫ \circ 0$ গ্রাম
ইউরিয়া	১২০০ গ্রাম
টি এসপি	৫৫০ গ্রাম
এমপি	$৫ ০ ০$ গ্রাম
দস্তা সার	$৫ \circ$ গ্রাম

ইউরিয়া ব্যতীত সকল সার জমি প্রস্তুতের সময় রোপণ গর্ত্ ৩০ $\times ৩ 0 \times ৩ \circ$ সেমি. এবং ইউরিয়া চারা রোপণের ৩০ দিন, ৯০ দিন ও ১৫০ দিন পর ৩ বারে প্রয়োগ করতে হয়। রোপণ দূরত্ব : সারি থেকে সারি 80 সেমি.

গাছ থেকে গাছ 80 সেমি.
চারার সংখ্যা ১২৫ টি
বাড়ির আভিনায় আনারসের চারা লাগালে সীমানা ঘেঁষে এক সারিতেও লাগানো যায়। এরে আনারস গাছ বেড়া হিসেবেও কাজ করে। তিতা কৃমিনাশক হিসেবে আনারসের টটটকা কচি পাতার রসও পাওয়া যায়।

উল্লেখ্য, আনারসের ফল একবার তোলার পর মুড়ি চাষ করতে হলে গাছ পরিক্কার করে পুনরায় সার প্রয়োগ ও পরিচর্যা করতে হয়।

আম ও কাঁঠাল গাছ্ছ সার প্রয়োগ : বহুজীবী ফলগগাছ উৎপাদননর ক্ষেত্রে আম ও কাঁঠাল গাছে চারা অবস্থায় ও পরবর্তীকালে বৃদ্রিপ্রাপ্ত অবস্থান সার প্রয়োগ করতে হয়। নিচে এ সম্পর্কে সংক্ষিপ্ত বর্ণনা করা হলো।

আম গাজ্ সার প্রয়োগ

জাত : লতা, ল্যাংড়া, ফজলী, বোম্বাই, গোপালভোগ আয়পালী, (কলম বা বীজ চারা)
গর্ত্র সার প্রয়োগ (বা বড় ড়াম)

সারের নাম	সারের পরিমাণ
কমপোস্ট গুঁড়া	$৫ 00$ গ্রাম
ইউরিয়া	২০০ গ্রাম
টিএসপি	২০০ গ্রাম
এমপি	২০০ গ্রাম

সার প্রয়োগের দুসপ্তাহ পর চারা রোপণ করতত হয়।
গাছ প্রতি রোপণ পরবর্তী সার প্রয়োগ

সার	গাছ্রে বয়র্ৰিতিক সারের পরিমাণ (গ্রাম)		
	১ বছুরের ক্ম	১ খেকে ৩-ছর	\bigcirc বছর্র 儿েশ্
কন্পপাস্ট গুঁড়া	300-200	200-800	800-600
ই্যরিয়\|	300-200	200-000	000-800
টिএসপি	10-500	200-200	200-000
এমপि	-0-80	80-300	200-200
জিপসাম	80-90	$90-320$	১20-3৫0

উক্ত সার বছরে ৩ বার অক্টাবর, ফ্রেবুুয়ারি ও জুন মাসে প্রয়োগ কররে হয়। রোপণ দূরত্ব : ৩ থেকে ১০ মিটার
রোপণ সময় : মার্চ থেকে জুলাই মাস পর্যন্ত আমের চারা লাগানো যায়।

চিত্র ৯০: আম গাছ।

চিত্র ৯১: কাঁঠাল গাছ।

কাঁঠাল গাছ্ সার প্রয়োগ

জাত : কোষ নরম ও শক্ত, আগাম, বর্ষাতি ও বারমাসী (কলম বা বীজ চারা) ফলন : ১০০ থেকে৩০০ কেজি/গাছ
গর্তে সার প্রয়োগ

সারের নাম	সারের পরিমাণ
কমপোস্টু গুঁড়া	$\varangle 00$ গ্রাম
ইউরিয়া	>00 গ্রাম
টিএসপি	>00 গ্রাম
এমপি	>00 গ্রাম

সার প্রয়োগে দু’সপ্তাহ পর চারা রোপণ করতে হয়।

রে|পণ পরবর্তী সার প্রয়োগ

সার	গাছের বয়সভিত্তিক সারের পরিমাণ (গ্রাম)		
	১ বছরের কম	১থেকে ৫ বছর	৫ বছরের বেশি
ক্মপোস্ট গুঁড়\|	১০০ থেকে ২০০	২০০ থেকে ৩০০	৩00 থেকে ৫00
ইউরিয়া	৫০ থেকে ১০০	১০০ থেকে ২০০	১00 থেকে ২০০
টিএসপি	৩০ থেকে ৫0	৫০ থেকে ১০০	১০0 থেকে ২০০
এমপি	৩০ থে<ে ৫০	৫০ থেকে ১০০	১০০ থে<ে ২০০
জিপসাম	২৫ থেকে 80	80 থেকে ৬০	৬০ থেকে >oo

এই সার বছরে ৩ বার অর্থাৎ অক্টোবর, ফেব্রুয়ারি ও জুন মাসে প্রয়োগ করতে হয়।
রোপণ দূরত্ব : ৮ থেকে ১২ মিটার
রোপণ সময় : মার্চ থেকে আগস্ট মাস পর্যন্ত কাঁঠালের চারা লাগালো যায়।

সুপারি গাছ্ছ সার প্রয়োগ

জাত : দেশী, থাই সুপারি, খুলনা, নারিকেলী
ফলন : প্রতি শতকে ১৫০০ থেকে ৩000 টি সুপারি
প্রতিগাছে ১৫০ থেকে ৩০০ টি সুপারি

চিত্র ৯২: সুপারি গাছ।

সাররর পরিমাণ (রোপণ গর্ত্ত) গর্ত $80 \times 80 \times 80$ সেমি.

সারের নাম	সারের পরিমাণ
কমপোস্ট গুঁড়া	৩00 গ্রাম
ইউরিয়া	১৫0 গ্রাম
টিএসপি	৩0 গ্রাম
এমপি	80 গ্রাম

বয়স্ক্ক গাছ্ছ সার প্রয়োগ

সারের নাম	গাছের বয়স ভিত্তিক সারের পরিমাণ (গ্রাম)		
	১ বছরের কম	১ থেকে 8 বছর	8 বছরের বেশি
	৪০ থেকে ৬০	৬০ থেকে ১৫০	$১ ৫ ০$ থেকে ৩০০
ইউরিয়া	৩০ থেকে ৫০	৫০ থেকে ১০০	$১ ০ ০$ থেকে ২০০
টিএসপি	১০ থেকে ২০	২০ থেকে ৫০	৫০ থেকে ১০০
এমপি	১০ থেকে ২০	২০ থেকে ৫০	৫০ থেকে ১৫০

প্রতি গাছে এই পরিমাণ সার বছরে সেপ্টেম্বর, ফেব্রুয়ারি ও জুন মাসে প্রয়োগ করতে रड़।

রোপণ দূরত্ব : সারি থেকে সারি এবং গাছ থেকে গাছ ২০ মিটার প্রতি শতকে গাছের সংখ্যা ১০টি গাছ।
রোপণ সময় : জুন থেকে সেপ্টেম্ব্বর মাস পর্যষ্ত সুপারির চারা লাগানো যায়।

সপ্তম অধ্যায়

ফুল গাছে সার প্রয়োগ

১। ফুল গাছছ সার প্য়়াগ্গর সাধারণ নীতিমালা

ফুল গাছছও অন্যান্য গাছের মত্তে সার প্রয়োগ করতে হয়| ফুলগাছছ সার প্রয়োগের উদ্দেশ্যও প্রয়োগ-সময় জানা আবশ্যক। নিচে এ সম্বন্ধে আলোচনা করা হল্লে।

ফুল গাছে সার প্রয়োগের প্রধান উদ্দেশ্য

ক. উজ্জ্জল ফল উৎপাদন করা;
খ. বড় আক্যরের ফুল উৎপাদন করা ;
গ. বেশি সংখ্যক ফুন উৎপাদন করা ;
ঘ. ফুলের সৌরভ বাড়ালনা ;
৬. ফুলের স্থায়িত্ব বাড়ারনা।

ফুল গাঢছ সার প্রয়োগের বিভিন্ন সময়

ক. চারা রোপণের্ সময় গর্তে সার প্রয়োগ করা ;
খ. গাছ বড় হ্যয়া অবস্থায় মাটিতে সার প্রয়োগ কর্া ;
গ. গাছ বড় হ্ওয়া অবস্থায় গাছছ স্প্রে করা।
এক্ষের্রে, ফুল গাছে সার প্রয়োগের উদ্দেশ্য 3 সার প্রয়োগের সময় বিবেচনা করে সারের পরিমাণ ও প্রয়োগ পদ্ধতি নির্ধারণ করা হয়েছে। বিশ্ষ করে ফল গাছছ সার প্রয়োগের ক্ষেত্রে সুষমিত কম্পোস্ট গুঁড়া সার প্রয়োগের উপর গুরুত্ব দেওয়া रরয়ছে।

ফু গাছে সার প্রয়োগোর ক্ষেত্রে প্রতি গাছে এবং পাশাপাশি বর্গ মিটারে, ৫ বর্গ মিটার বা ১০ বর্গমিটারের ই্ত্যাদি আয়তন ব্যবহার করা ইয়েছে। সারের পরিমাণ নির্ণয়ের সুবিধার জন্য তা করা হ্য়েছে।

২। ফুল গাছ্ প্রয়োগের জন্য সাররর পরিমাণ ও প্রয়াগ পদ্ধীতি
বিভিন্ন প্রকার ফুলের গাছে প্রয়োগ পদ্ধতি উপর ভিত্তি করে বিভিন্ন পরিমিাপে সার প্রয়োগ করতে হয়। নিচে গুরুত্বপূণ কয়েকটি ফুল গাছে সার প্রয়োগের পদ্ধতিসহ সারের भরিমাপ উল্লেখ করা হর্লো।

গোলাপ

জাত : মধ্যমাকার গাছ হাইব্রিদ টি ও পারপিচুয়াল।
গাছ প্রতি সারের পরিমাণ : সাধারণ মাত্রা
রোপণ : গর্তে (গর্ত $80 \times 80 \times 80$ সেমি.) বা টবে

সারের নাম	সারের পরিমাণ
কমপোস্ট গুড়া	$ง 00$ গ্রাম
ইউরিয়া	$১ ৫ ०$ গ্রাম
টिএমপি	$১ ৫ ०$ গ্রাম
এমপি	৮০ গ্রাম
জিপসাম	২৫ গ্রাম

চিত্র ৯৩: গোলাপ।
(গোলাপ গাছ্রু আকার এবং গোলাপ ফুলের সংখ্যা, আকার ও প্রকারের উপর ভিত্তি করর সাররর পর়িমাণ নির্ধারণ করতে হ্য়।)

গর্তে সার দেওয়ার দু'সপ্তাহ পর চারা রোপণ করতে হয়। রোপণের পরবর্তী মাস থেকে প্রতি গাছ্ প্রতি সপ্তাহহ ৩০ থেকে ৫০ গ্রাম কমপোস্ট গুঁড়া ব্যবহার করতে হ্য়। দ্বিতীয় বছর থেকে প্রতি গাছে প্রতি সপ্তাহে ৫০ থেকে ১০০ গ্রাম কমপোস্ট গুঁড়া ব্যবহার করতে

হয়। সাথে সাথে নিয়মিত তরল সার ব্যবহার করতে হয়। বাগানে বা গাছ্ ফুলের সংখ্যা কম মনে হলে গাছ প্রতি মাসে ২০ গ্রাম কররে ইউরিয়া, টিএসপি ও এমপি সার দিতে হয়। রোপণ দূরত্ব : সারি থেকে সারি ১০০ সেমি.
গাছ থেকে গাছ ৫০ সেমি.

গাছ্রের আকার আকৃতি অনুসারে এই দূরত্ব কমবেশি হয়।
রোপণ সময় : সেপ্টে্্যর-অক্টোবর মাসে গোলাপের চারা (কল্লম) লাগালে ভাল হয়।

ছোট গোন্াপ
জাত : ড়ুয়ার্ফ পলিয়েন্থা ফ্লেরিবান্দা চौना গোলাপ গাছ্ছ উচ্চতা : ৬০ সে. মি.

সারের পরিমাণ (প্রতি বর্গমিটারে বা ২ থেকে ৩ টি টবে)

সারের নাম	সারের পরিমাণ
কমপোস্ট	৫০০ গ্রাম
অথবা	
কমপোস্ট গুঁড়া	$২ 00$ গ্রাম
ইউরিয়া	80 গ্রাম
টিএসপি	80 গ্রাম
এমপি	৩০ গ্রাম
জিপসাম	২০ গ্রাম

রোপণ পরবর্তী সময়ে প্রতি গাছে প্রতি মাসে ৩০ থেকে ৫০ গ্রাম কমপোস্ট গুঁড়া প্রয়োগ করতে হয়।
রোপণ দূরত্ব : সারি থেকে সারি ৬০ সেমি.
গাছ থেকে গাছ ৩০ সে. মি.
রোপণ সময় : সেপ্টেম্বর থেকে নভেম্বর মাস পর্যন্ত এই গোলাপের চারা রোপণ করা যায়।

রজनীগন্ধা

জাত : সিংগেন ও ডাবল, ইন্ডিয়ান
সারের পরিমাণ (প্রতত বর্গ মিটার বা ৪টি টবে)

চিত্র ৯৪: রজনীগন্ধা ফুল।

ইউরিয়া ব্যতীত অন্যান্য সার জমি প্রস্তুতের সময় চারা রোপণের সারিতে এবং ইউরিয়া সার ৩ ভাগ করে চারা রোপণের ৩০, ৫০ ও ৭৫ দিন পর প্রয়োগ করতে হয়। দ্বিতীয় বছরে একই পরিমাণ সার একই নিয়মে প্রয়োগ করতে হয়।
রোপণ দূরত্ব : সারি থেকে সারি ৩০ সে.মি. গাছ থেকে গাছ ২০ সে.মি.
রোপণ সময় : ফেব্রুয়ারি মার্চ মসসে রজনীগন্ধার চারা রোপণ করলে ভাল হয়।

ফুল গাছ্ সার প্রয়োগ

গাছের নাম : শেফালী, কবরী, কামিনী, কাঞ্চন, যুঁই, মাধবীলতা, বাগানবিলাস রোপণ গর্ত্ডে সার প্রয়োগ : গর্ত ৬০ \times ৬০ \times ৬০ সেমি.

সারের নাম	সারের পরিমাণ
কমপোস্ট অুড়া	2000 গ্রাম
ইউরিয়া	500 গ্রাম
টিএসপি	200 গ্রাম
এমপি	200 গ্রাম
জিপসাম	গ্রাম

গর্তে সার প্রয়োগের ২ সপ্তাহ পর চারা রোপণ করতে হয়।
গাছে রোপণের পরবর্তী মাস থেকে ফুল আসার পূর্ব পর্যন্ত প্রতি মাসে নিম্নরপ হারে সার প্রয়োগ করতে ছয়।

সারের নাম	সারের পরিমাণ
কমপোস্ট অুঁড়	৫০ থেকে >00 গ্রাম
ইউরিয়া	$৩ 0$ থকে 80 গ্রাম
बिএসপি	২০ থকে ৩০ গ্রাম
এমপি	$২ ০$ থকে ২০ গ্রাম
জিপসাম	৫ থকে ১০ গ্রাম

ফুলন্ত গাছ প্রতি সারের পরিমাণ

সারের নাম	সারের পরিমাণ	প্রতি মাসে প্রয়োগ করতে হবে।
কমপোস্ট बুঁড়\|	300 গ্রাম	
ইউরিয়া	৫O গ্রাম	
টিএসপি	vo গ্রাম	
এমপি	২০ গ্রাম	
জিপসাম	১৫ গ্রাম	

অথবা প্রতি মাসে ৫০০ গ্রাম কমপোম্ট গুঁড়া দিলেই চলে।
রোপণ দূরত্ব : ২০০ থেকে ৩০০ মিটার
রোপন সময় : এপ্রিল-ম্ম বা সেপ্টেম্বর -অক্টোবর।

बৌসুমী ফুন গাছ্ সার প্রয়োগ

সারের পরিমাণ গাছের আকার, উচ্চতা ও রোপণ নপ্যার বাগানে বা টবে মৌসুমী ফুলগুলো উচ্চতা অনুসারে মিশ্র বর্ণে সাজিয়ে বা গুচ্ছাকার নও্সায় রোপণ করতে হয়। এখানে প্রধান প্রধান শীতকালীন মৌসুমী ফুল গাছের উচ্চতা দেওয়া হল্লে। গাছের আকার ও উচ্চতা বিবেচনা করে সাররে পরিমাণ নির্ধারণ করতত হয়।

ফুলের নাম	গাছ্রে উচ্চতা
পর্টুলেকা সালপি গ্লোসিস (খাটো) এগেরিটাম (খাটো) ফ্লব্স লোবেলিয়া গাঁদা	১৫ থেকে ২৫ সেমি.
সুই উইলিয়াম ভারবেনা লিনারিয়া মিমুলাস নেস্টারশিয়ান (খাটো)	২০ থেকে 80 সেমি.
এন্টিরহ্নাম (খাটা) ক্যালেন্ডুলা কেন্ডিটাফ্ট ডায়ান্থাস করগেট-মি-নট নিমেশিয়া লুপিন	২০ থেকে 80 সেমি.

প্রতি বর্গমিটারে উল্লিখিত ফুল গাছ্ সাররর পরিমাণ নিচে উল্লেখ করা হল্লো

সারের নাম	সারের পরিমাণ
কমপোস্ট গুঁড়া	$১ 000$ গ্রাম
অথবা	
কমপোস্ট গুঁড়া	৫০০ গ্রাম
ইউরিয়া	২০ গ্রাম
টিএসপি	৫० গ্রাম
এমপি	২০ গ্রাম
জিপসাম	১৫ গ্রাম

সব সার জমি প্রস্তুতের সময় প্রয়োগ করতে হয়। চারা রোপণের পর প্রতি সপ্তাহে প্রতি বর্গমিটারে ৫০ গ্রাম করে কমপোস্ট গুঁড়া ব্যবহার করলেই চলে।

ষুলের নাম	গাছ্র উচ্চতা	রোপন দূরত্ব
এগেরিটাম কারনেশন সাইনোগ্লোসাস লার্কসপার ওয়াল ফ্লাওয়ার পপি ডেইজি গাঁদা ডালিয়া	80 থেকে ৬০ সেমি.	OO সেমি.
এস্টিরহিনাম এ্দ্টার (তারা ফুল) করিওপসিস পিটুনিয়া স্ট্ট ফ্লাওয়ার লুপিন নেশ্টারশিয়া চन্দ্রমল্লিকা ক্লিওম ডালিয়া	৬০ থেকে ৭৫ সে.মি	৩০ সেমি.
কেন্সালুলা নিকোশিয়ানা লুনারিয়া সালপিগ্গোসিস কসমস ডাল্লিয়া হলিহক	৭৫ থেকে ৯০ সেমি.	80 সেমি.

চিত্র ৯৫ : পুর্ট্রলেকা।
(সুষম সার প্রয়োগ করলে পর্ট্রেলেকা ফুল্নের আকার বড় হয় এবং রঙ উজ্জ্মল হয়।)

চিত্র ৯৮ : এf্টিরহিনমম ও ফ্লু্প ফুল।

চিত্র ৯৭ : সুই্ট উইলিয়াম ও ডায়ান্গাস।

চিত্র ৯৮ : ভারভেনা তিন ধরনनর (ক, খ,গ) ফুল।
কয়েকটি ঊপজাত রয়েছ। এককভাবে জন্মাল
(ভারভেনা ফুলের বেশ
অনুসারর সার দিতে হয়।)

চিত্র ৯৯ : ক্যালেন্ডুলা ও ন্যাস্টারশিয়াম।

-চিত্র 200 : কারন্নশন ও পপি।

চিত্র ১০১: ডালিয়া।
(ডাनিয়া ফুলের অন্নকগুলো উপজাত রয়েছে। यেমন সিঙ্গল 3 ডবল, লাল, হ্নরে ও মিশ্র। ফুল্লর সংখ্যা ও আকার গবং গাছছর আকারের উপর ভিত্তি করে সাররর পরিমাণ নির্ধারণ করতে হয়। পরিমিত

চিত্র ১০২: ক্মমস ও रूলিহক।

চিত্র $\operatorname{\text {OOC:জিনিয়াওএলিসান}}$

গ্रীष्ম ও বर्षাকাनीन ফুল

ফुलুরু नाম	গাছের উচ্চত	ররাপাণ দৃরত্ব
বোতাম ফুল দোপাটি (কারিওপসিস শ্যাম সোহাগিনি পার্টুলেকা	২৫ থেকে ৫০ সে.মি.	OO সেমি.
মোরগ ফুল টোরেনিয়া জিনিয়া কোচিয়া	৫০ <েকে ৮০ ハেমি.	৩৫ সেমি.
ছলদদ কসমস সূর্ষমুখী টিমোনিয়া সन্ধা\|্ি সূর্যমণি বৈজ্য়ন্তী	৮০ থেকে ১২০ সে. মি.	80 সেমি.

সাররর পরিমাণ প্রতি বর্গ মিটার বা ২টি টবে

সাররর নাম	সারের পরিমাণ
কমপপোস্ট গুঁড়া	১৫00 গ্রাম
অথবা	
কমপোস্ট গুঁড়\|	१०० গ্রীম
ইউরিয়া	$\bigcirc 0$ গ্রাম
টি এসপি	80 গ্রাম
এম পি	र० গ্রীম

পরবর্তী সমর়় ফুলের প্মৗসুম পর্যন্ত প্রতি বর্গমিটারে সপ্তাएহ ৫০ গ্রাম ক্মপাস্ট গुঁড়া ব্যবহার করতে ছয়।

ক্ষুদ্র ঝোপজাতীয় ফুল

বেলী সুইট সুলতান, নার্গিস, টগর, গাছের উচ্চতা ১৫০ থেকে ১৬০ সে. মি. হাস্নাহেনা, দেললনচাপা, डূँইচাপা

সারের পরিমাণ (প্রতি গাছে বা প্রতি টবে)

সারের নাম	সারের পরিমাণ
কমপোস্টে গুঁড়\|	১২০০ গ্রাম
অথবা	
ব:মপোস্টে গুঁড়া	৬০০ গ্রাম
ইউরিয়া	$\bigcirc \bigcirc$ গ্রাম
টি এসপি	80 গ্রাম
এমপি	২০ গ্রাম
জিপসাম	১৫ গ্রাম

পরবর্তী প্রতিটি গাছ্ ১৫ দিন পর পর ৫০ গ্রাম করে কমপোস্টে গুঁড়া ব্যবशার করতে হয়। জবা : গাছের উচ্চতা ফুলবৃক্ষ ২০০ থেকে ২৫০ সেমি.
গন্ধরাজ : রোপণ দূরত্ব ২০০ সেমি.

সারের পরিমাণ (প্রতি গাছে) রোপণ গর্তে

সারের নাম	সারের পরিমাণ
কমপোস্ট গুঁড়া	২০০ গ্রাম
ইউরিয়া	80 গ্রাম
টিএসপি	২০ গ্রাম
এমপি	২০ গ্রাম
জিপসাম	$১ ৫$ গ্রাম

রোপণ পরবর্তী সময়ে গাছে প্রতিমাসে ৫০ গ্রাম, ২ থেকে ৫ বছরে ১০০ থেকে ২০০ গ্রাম এব?
বড় গাছে প্রতি সপ্তাহে ১০০ গ্রাম কমপোস্ট গ্ঁঁড়া দিলেই চলে।

জেসমিন ফুল

জেসমিনজাতীয় ফুল ও সেগুলোর উচ্চতা উল্লেখ করা হলো।

গাছ্ছের নাম	গাছের উচ্চতা
বেলী বা বেলা খেয়ে বেলা মাতিয়া বেলা রাই বেলা	৬০ থেকে ৭৫ সেমি.
চামেলী	৬০ থেকে ৯০ সেমি.
জুঁই স্বর্ণ জুঁই মন্লিকা	১২০ থেকে ১৬০ সেমি.

সারের পরিমাণ (প্রতত গাছে বা প্রতি ড্রাম্ম) রোপণ গর্তে বা বড় গাছ্রে

সারের নাম	সারের পরিমাণ
কমপোস্ট গুঁড়া	৫०० গ্রাম
ইউরিয়া	৫० গ্রাম
টি এস পি	80 গ্রাম
এম পি	$৩ \circ$ গ্রাম
জিপসাম	২० গ্রাম

পরবর্তী সময়ে প্রতিটি গাছে প্রতি সপ্তাহে ৫০ গ্রাম করে কমপোস্ট গুঁড়া দিলেই চলে।

বাহারী লতা ও ফুল

অপরাজিতা, বহুলতত, মাধীবীলতা, কুন্ধলতা, বাগানবিলাস, মালতী, ঝুমকোলত, কুমারীলতা
অন্যান্য লতার নাম পরবর্তীকালে দেওয়া হয়েছে।
প্রতি গাছে রোপণ গর্ত্ত সারের পরিমাণ

সারের নাম	সারের প্রমাণ
কমপোস্ট গুঁড়া	200 গ্রাম
ইউরিয়া	80 গ্রাম
টি এস পি	$৩ 0$ গ্রাম
এমপি	20 গ্রাম
জিপসাম	$২ 0$ গ্রাম

চারা রোপণের পর প্রতি গাছে প্রতি মাসে ৫০ থেকে ১০০ গ্রাম কমপোস্ট গুঁড়া ব্যবহার করলেই চলে।

বাহারী গাছ

পাতা বাহার	গাছ্রে উচ্চতা, জাত ও ছাঁটাই		
দূরন্ত			
ককটাস			
ছায়াগাছ		\quad	অনूসারে ভিन्न হয়ে থাকে।
:---:			

অন্যান্য বাহারী গাছের নাম পরবর্তীতে দেওয়া হ্য়ছে! এসব গাছে প্রতি ২ থেকে ৩ টি টবে বা প্রতি বর্গমিটারে প্রতি মাসে ৫০ থেকে ১০০ গ্রাম কমপোস্ট গুঁড়া দিলেই চলে।

গোলাপ গাছছ সার প্রয়োগের বিশেয জ্ঞাতব্য

ফুল গাছের মধ্যে গোলাপ গাছে সার প্রয়োগ খুবই গুরুত্বপূর্ণ, কারণ বর্তমানে গোলাপের বাণিজ্যিক চাষের ব্যাপক প্রসার ঘটেছে।

অধিক সংখ্যক উন্নত মানের ফুল উৎপাদন করতে হলে গোলাপে জৈব ও রাসায়নিক সারের সমন্বয়ে সুষম সার প্রয়োগ করতে হয়।

গোলাপে সার প্রয়োগের প্রকার ও পরিমাণ মূলত গোলাপ গাছের আকার, আকৃতি, ফলের বর্ণ ও ফুলের গাছের উপর নির্ভর করে। যেমন-

গাছ ও ফুলের আকার

ক) গাছ ও ফুলের আকার বড় করতত रলে গাছে পর্যাপ্ত নাইট্রোজেন ও ম্যাগনেশিয়াম সার প্রয়োগ করতে হয়। গোলাপ গাছে ম্যাগনেশিয়ামের অভাব হ্লে পাতার আকার ছোট হয়, ফলে ফলের আকারও ছোট হয়ে যায়।

খ) ফুলের বর্ণ : ফুলের বর্ণ আকর্ষণীয় করত্ত হললে ক্লোরিনসম্পন্ন সার ব্যবহার করা যাবে না। এক্ষেত্রে পটাশ্রের জন্য মিউরেট অব পটাশের বদলে পটাশিয়াম সালফেট বা পটাশ্যিয়াম নাইটেট ব্যবহার করতে হয়। সুষম ফসফেট সার ফুলের পাপড়ির সতেজতা বাড়ায়, বর্ণ উজ্জ্রল করে, ফুলের স্থায়িত্ব বাড়ায়।
গ) ফুলের গন্ধ সুগন্ধী গোলাপের চাষ করতে হলে সেক্ষেত্রে অবশ্যই পর্যাপু পচা জৈবব সার বা সুষম কমপোস্ট গুঁড়া এবং অণুপুষ্টি (micronutrient) সার ব্যবহার করতত হয়। সালফার, দশ্তা ও বোরনের অভাব হলে ফুলের গন্ধ কম্ম যায়। গাছে মলিবড়েনামের অভাব হল্লে ফুলের গন্ধের স্থায়িত্ব কমে যায়।

এসব বিবেচনা করে গোলাপ গাছে সার প্রয়োগের সুবিধার্থে এদেশে সচরাচর চাষ করা জাতের আকার, ফুলের বর্ণ ও গন্ধের ভিত্তিতে গোলাপের একটি শ্রেণিকরণ উল্লেখ করা रलना।

সাধারণ নাম	ফুরের বর্ণ	গাছ্র প্রকৃত
১. গোনাপ (উচ্চতা এক মিটাররর বেশি)		
স্লিভার জুবিলী	গোলাপি এবং ঘিয়ে	ঝোপ
আলেকজান্ডার	কমলা গোল্গাপি	খাড়া
এ্যাডমিরাল রুুডনি	হাল্কা গোলাপি	ঝোপ
শান্তি	হ্লদে গোন্যাপি	ঝোপ
জান্ট জয়	তামাটে গোলাপি	ঝোপ
গ্যান্ড ডিকসন	হ্লদে	খাড়া
ন্যাশনাল টাশ্ট	লাन	ঝোপ
পিকাডেলি	লাল হ্লদে	খাড়া
পিঙ্ক ফেবারেট	গাঢ় গোনাপি	খাড়া
ফ্য্যাগর্যান্ট ক্লাউড	नाल	খাড়া
রেড ডেভিড	लान	খাড়া
টোইকা	ক্ললা नाল	খাড়া
আরনেস্ট এইচ মোরস	लान	খাড়া
২. গুচ্ছ গোলাপ (উচ্চতা এক মিটাররর কম)		
অ্যানিস	হাল্কা হলদে	ঝোপ
সাউম্প\|	কমলা	খাড়া
এভলিন ফিসন	नाल	ঝোপ
এলিজাবেথ	হাল্কা গোলাপি	খাড়া
পিঙ্ক পারফেব্ট	গোলাপি ক্রিম	ঝোপ
কোরিসিয়া	উজ্জ্রল হল্লদে	ঝোপ
মারগাররট মেরিল	ক্রিম	ঝোপ
আরথারবেন	স্বর্ণ হলুদ	ঝাপ
সিটি অব লিডস	গাঢ় গোলাপি	ঝোপ
ঢ্যুম্পীটর	नाल	ঝোপ
এসকেপেইড	গোলাপি সাদা মিশ্র	খাড়া
আইরিশ বিউটি	গোলপি গাঢ়	খাড়া
কোরবেন	গোলাপি	খাড়া
লিভারপুল একো	গোলাপি	ঝোপ

সাধারণ নাম	বর্ণ	গन্ধ
৩.ক্ষুদ্রে গোলাপ (উচ্চতা আধা মিটারের কম উঁচু)		
এন্দোলা রিপন	গাঢ় গোলাপি	মধ্যম
বেবী মসকুইরেড	হলদদ ও লাল মিশ্র	গন্ধহীন
ডারলিং ফ্লেইম	গাঢ় ফসল	গন্ধহীন
রেড এইস	খয়েরী	হাল্কা
রাইজ এন সাইন	হলদে	হাল্ফা
স্টারিনা	কমলা লাল	হাল্কা
পৌী টয়	ক্রিম সাদা	হাল্কা
জুড্ডি ফিচার	গোলাপি	হাল্কা

8. লতা গোলাপ (উচ্চতা ৩ মিটারেরর বেশি)

লতাজাতীয় গোলাপে ফস্ফটের চেয়ে নাইটোজ্রেন বেশি হয়ে গেলে গাছ পাতায় ভরে গিয়ে ফুলের উৎপাদন কম্ম যায়। এজন্য এসব জাত্রে গাছে পর্যাপু ফসফেট সার দিতে र! \mid

সাধারণ নাম	বর্ণ	গন্ধ
হ্যান্ডल	ক্রিম	হাল্কা
কমপ্যাসন	গোলাপি	কড়া
স্পেক্টিকুলার	কমলা লাল	গন্ধইীন
ब\গোল্ড	হলদ̆	কড়़
গোল্ডেন শাওয়ারস	সোনালি হ্লুদ	মধ্যম
আলররবারটিন	হাল্কা গোলাপি	কড়़
থর্নলেস রোজ	গাঢ় গোলাপি	কড়़\|
মারমমইড	হলদদ	মধ্যম
निউ ড্র	তামাটে গোলাপি	কড়\|

৫. গুল্ম গোলাপ (উচ্চতা ১ থক্ক ২ মিটার)

সাধারণ নাম	বর্ণ	গন্ধ
ফ্লেড লোডস		ছাল্কা
ব্যালেরিনা	হাল্বা গোলাপি	ছান্কা

লতাজাওীয় গাছে সার প্রয়োগ

লতাজাতীয় গাছ ছায়া, আধা ছায়া বা সূর্যালোকসম্পন্ন পরিবেশে রোপণ করা হয়। বেলে মাটি, দো-আঁশশ মাটি ও đँটেল দে-আশশ মাটিতে লতাজাতীয় গাছ লাগানো হতে পারে। তাই লতাজাতীয় গাছের প্রকৃতি, প্রাপ্ত সূর্যালোকের পরিমাণ এবং মাটির প্রকৃতির উপর নির্ভর করে সারের পরিমাণ নির্ধারণ করতে হয়। যেমন-
ক) গাছ সূর্यালোকে হলে সারের পরিমাণ বাড়িয়ে দিতে হয়।
খ) গাছ লাগানোর মাটি বেলে হলে জৈব সার ও রাসায়নিক সারের পরিমাণ বাড়িয়ে দিতে হয়।
গ) মাটি উর্বর ও সুনিষ্কাশিত হলে সারের পরিমাণ কিছুটা কমিয়ে দেওয়া যায়।
ঘ) গাজ, অণুপুষ্টি সারের ঘাটতি দেখা দিলে তা পরবর্তীতে গাছের পাতায় স্প্রে করা यায়।
ঙ) ছায়ায় লাগানো গাছের কাঠামো শক্ত রাখার জন্য পটাশিয়াম ও ক্যালসিয়াম সরবরাহ নিশিত করা খুবই গুরুত্বপূর্ণ।
চ) রোদে লাগানো গাছে যাতে ম্যাগনেশিয়ামের ঘাটতি না হয় সেদিকে খেয়াল রাখতে ছয়। মাটিতে প্রয়োগ ছড়াও ম্যাগনেলিয়াম সার বা ইপসম সন্ট গাছছর পাতায় স্প্রে করা যায়।

সাধারণ নাম	স্থান / মাটি	গাছের প্রকৃতি
এক্টিনিড়িয়া	সৃর্যালোকিত	नতा
	সাধারণ মাটি	
বিটার সুইট	সূর্যালোক বা হাল্কা ছায়া	लতा
	সাধারণ মাটি	
আই ভি	ছায়া, সাধারণ মাটি	लতा
জেসমিন	সূর্যালোকিত	लত
	সাধারণ মাটি	
অলংকার লতা	সূর্যালোক বা হাল্কা ছায়া সুনিষ্কাশিত মাটি	লতा
শিলা গোলাপ	সূর্যা/োকিত	গुल्ম
লেভ্ডের	সূর্যালোককিত বা হাল্কা ছोয়া, সুনিশ্কাশিত মাটি	গुল্ম
প্রাইভেট	সূর্যালোকিত বা ছায়া সাধারণ মাটি	গुल్ম
ম্যাগননালিয়া	সূর্যালোকিত বা হাল্কা ছায়া হিউমাস মাটি	গुल্ম
ভর্জিনিয়া লতা	সূর্যালোকিত বা शাল্কা ছায়া, উর্বর মাটি	लতा

সাধারণ নাম	স্থান/মাটি	গাছের প্রকৃতি
ভার্জিনিস বোয়ার	হাল্কা ছায়া উর্বর মাটি	লতা
প্যাসন	সূর্যালোকিত সুনিশ্কাশিত มাটি	লতা
হানি সাক্ল	সূর্यালোকিত বা হাল্কা ছায়া Чॅ্বর মাটি	লতा
উইসটেরিয়া	সূর্যালোকিত উর্বর মাটি	लতा

জনপ্রিয় ফুনও লতা-বাহারী গাছের নাম
 গোলাপের প্রকার

চায়নেসিস, হাইব্রিড পাপ্পিচুয়াল, হাইব্রিড-টি, পলিয়েহ্থা ফ্লোরিবান্দা, লতা গোলাপ ও গুল্ম গোলাপ।

জনপ্রিয় গোলাপের উপমহাদেশীয় জাত

পাপা মিলান্দ, সর্বোদয়, জয়, বসরাই, কুমকুম, তাজ্মহন্ন, রাণী, রাজা, তুহ্নি, হরিদ্রা , বুরবো, পণ্ডিত নেহেরু, ক্রিমসন গ্লোরি, সোলে, গঙ্গা, জওহর, কমলা, শ্রীনিবাস, লালবাহাদুর, ম্ণালিনি, চন্দ্রমা, প্রেম, প্রিয়া, বনজারণ, ভগবতী, মেহিনী অ দিল্লী প্রিন্সে।

শরত ফুল

শাপলা, রক্তকমল, লালপাম, স্থলপদ্মা, জবা, রাধাচূড়া, কনাবতী, করবী ও শিউনী। শেফালী

হ্মেন্ত ফুল

হাস্নাহেনা, মধুমঞ্জুরী ও দেবকানন।

বসন্ত ফুন (বৃক)

ভাটফুল, ভূँইচাপা, निলি, গিরিমল্লিকা, কনকচাঁপা ও অन্যান্য চাঁপা, শিমুল, কাঞ্চন, গন্ধরাজ, নাগেশ্বর (নাগকেশর), পলাশ, অশাক ও সন্ধামণি।

গ্রীম্মফুল (বৃক্ষ)

কদম, রঙ্গন, শ্বেতকাঞ্চন, যুঁথि, বা জুঁই, রজনীগन্কা, দোলনচাঁপা, কেতকি, কামিনীী, পারুন, পিয়াল, বকুল মান্দার, সোনাইল, হিজল, তমাল, টগর, মল্লিকা ও জয়ন্তী;

ঔষধি ফুল

অতসী, গাঁদা, চন্দ্র, মল্লিকা, দুপুরচস্ডি, দোপাটি, নয়নতররা, মোরগ ফুল, সন্ধামালতী ও বকফুল।

नতा
অপরাজিতা, চামেলী, যুঁথি, ঝুমকা, তারামনিদেতা (কুঞ্জলতা) গ্লোরিওসা, নীলমণি লতা, বাগানবিলাস, মর্নিং গ্লোরি, মাধুরি লতা, মধুমালতী, ব্রহ্গলতা,

মৌসুম

ডালিয়া (চিত্রিতা, ক্যাকটাস ও পম্পন), কসমস, জিনিয়া, সেলভিয়া, হলিহক, এশ্টার, नার্কসপার, সুই্টপি, পিটুনিয়া, ফ্ুফ, পর্তুলেকা, ভার্বেনা।

বাহারী গাছ

পাতাবাহার, লাল পাতা, মানি প্ল্যান্ট, পুন্নাগ, বকফুল, মেন্দি, মুন ফ্লাওয়ার (চন্দমুখী), ম্যাগনোলিয়া, উদয় পদ্ম, লবঙ্গ লতা, সুরতি (গরিনিম), হলদে শাপলা।

বিরুল তরুলতা

অনন্তলতা, কালবাসক, পারুল, কেশরাজ, গকুল (গুইয়া বাবুল) চিতা, টেকমা (সোনাপাতি), ডে লিলি (গুল নার্গিস) তেলসুর।

আনো-ছায়ায় রোপরের উপযোগী বিভিন্ন গাছ

সাধারণ নাম	স্থান মাটি	গাছের প্রকৃতি
বাররেরি	সূর্যালোকিত	গুল্ম
	হাল্বে ছায়া	
বাটারফ্ডাই বুটশ	সুর্যা\|্লোকিত সুনিষ্কাশিত মাটি	গুল্ম
ক্যামেলিয়া	সূর্যালোকিত বা হা্ক্র ছায়া	গुल्ম
ললি স্টির	সূर्याলোকিত বা হাল্কা ছায়া সাধারণ মাটি	গুन्ম
হাইড্রেনজিয়া	আथশিক ছায়া সুনিষ্ষাশিত মাটি	গुल्ম
ইউনিমাস	সূর্যালোকিত বা হাল্কা ছায়া সাধারণ মাটি	
হেনি	সূর্যালোকিত বা হাল্কা ছায়া সাধাবণ মাটি	গুল্ম
প্রুন্নাস	সূর্यालোকিত বা হাল্কা ছায়া সাধারণ মাটি	গुल্ম
এজালিয়া	আংশিক ছায়া অय্লমাটি	গুল্ম
ডিবার নাম	সৃর্य\|লোকিত रिউমাস মাটি	গुल्ম

সুষম সার দেওয়া জমিতু-টবে চারা রোপণ থেকে ফুল ফোটার সময়সীমা

ফুুলের নাম	সময়সীমা
কসমস, ক্যালেন্ডুনা, পর্টুলেকা, পপি	৩০ থেকে ৩৫ দিন
ন্যাস্টার্িয়াম, রজনীগন্ধা, গাঁদা, শ্যুফ্লাওয়ার, টিথোনিয়া, জিনিয়া এन্টিরহ্নিাম, স্যাপপ ড্রাগন, জিপসোফিলা	৭০ থেকে ৯০ দিন
কোরিওপসিস, কারনেশন, ক্লিওম, সুইট সুলতান, ভারবেনা, লুপিন, লার্কসপার, ডালিয়া, অপরাজিতা, নিমেসিয়া, পানজি, ক্যাম্পানুলা, ডায়ান্থাস, স্যালভিয়া, লোবেলিয়া, সালপিগ্লোসিস, মোরগ ফুল, অতসী এগারেটাস, চন্দ্রমল্লিকা	৯০ থেকে ১০০ দিন
ফরগেট-মি-নট, সুইটপি, মাইওসোটিস	১০০ থেকে ১৩০ দিন।

উপকরণণের প্রাপ্তিস্থান

বীজ, চারা, কলম, সার, বালাইনাশক, কৃষিপুস্তক ও কৃষি যস্ত্রপাতির প্রাপ্তিস্থান (ঢাকা) কুষ্টিয়া সিড ব্টোরস : রোড ৩ বাড়ি-৭, মিরপুর ১১, ঢাকা। টেলিফোন ৮০১৪৩৫, ৮০২৩৩৬।

কৃষিবিদ উপকরণ নার্সারি: খামার বাড়ী সড়ক, ফার্মগেট, ঢাক। টেলিফোন ৮০২৩৩৬।
আদর্শ জৈব খামার : পুবাইল রেলওয় স্টেশন সংনগ্ন, জয়দেবপুর, গাজীপুর, টেলিফোন (ঢাকা)-৮৩৮০২৪।
ইউনাইটেড সিড ব্টোর : ১৫ গ্রীন রোড, ঢাকা। টেলিফোন ৫০৮৫০৯, ৫০০৩৭৮। মেসার্স জয়পাড়া বীজ ভাণ্ডার ঃ ১৪৫ সিদ্দিক বাজার, ঢাকা। টেলিফোন ২৮১০৭৯। ক্যাপিটাল সিড হাউজ : ১৯০ শেরে বাল্লা রোড, খুলনা। টেলিফোন ২৩৬৬৩, ২০০৯৫।
ঢাকা সিড ন্টোর ঃ ৯ ডি আইটি এভিনিউ, ঢাকা টেলিফোন ২৩১৪৬০। ब্সোর্স নাদিম বীজ ভাণ্ডার : ১98 সিদ্দিক বাজার, ঢাকা। টেলিফোন ২৩৫৭৪৮। এগ্রিক্পেক্স : ৫৩ মর্তিঝিল বাপিজ্যিক এলাকা, ঢাকা। টেলিফোন ২৫৭১৫৪, ২৩১০০৮। মল্পিকা সিড কোম্পানি : ১৪৯ রাজউক এক্ষটেন্নন রোড, টেলিফোন $80 ৩ ৫ ৩ ৬ ~$ 80৬08৩
দি সোসাইটি নার্সারি : কে. সি. দে রোড চট্টগ্রাম। টেলিফোন ২০৫৬২৪।

ঢাকা বোন এন্ড সার : ৩১/ই তোপখানা রোড, ঢাকা। টেলিফোন ২৪৩৪৪৫, ২৫৭৭৫৬। মাইম্পেক্স ইন্টারন্যাশনাল : ৩২৫ বায়তুল আম:ন, রোড ৩, শ্যামলী, ঢাকা টেলিফোন ৩২৪২৬৭।
এগ্রোসার্ড : রেড ব্রিসস্ট বিল্ডিং $3>8$ মতিঝিল বা/এ, টেলিফোন ২৫০০৭৫, ২৫৭৭৯২। রাজধানী বীজাগার ঃ ১৭৪ ফুলবাড়িয়া স্টেশন রোড, ঢাকা, টেলিফোন ২৪৯১৮৬,

সাধারণ কৃষি যন্ত্রপাতি

বাড়ির আঙিনায় মাঠে, ছাদে টবে শাক-সবজি, মসলা, ফুল, ফলমূল, চাষাবাদ করার প্রয়োজনে বাড়িতে কিছু যন্ত্রপাতি ও উপকরণ রাখতে হয়। ব্যেন-
সংরক্ষণ পাত্রঃ প্লাস্টিকের ছোট বড় বয়ম বীজ ও সার দ্রব্য রাখার জন্;;

চিত্ত ১০৭: সার দ্রব্য রাখার পাত্র।
ছোট আলমারী ঃ রোগনাশক, কীটনাশক, হর্মোন ও অন্যান্য পাত্র ও উপকরণ নিরাপদদ রাখার জন্য;
কোদাল খুরপি: মাটি আলগা করা, আগাছা বাছাই ছেট লাঙ্ল ;
ঝাঝরি, বালতি, মগ : গাছে পানি দেওয়ার জন্য;
দা, ছুরি, কাচি: গাছ ছাঁটাই ও কলম কাটার জন্য;
কাঠর বাক্স বা ফ্রম ঃ বীজতলা হিসেবে চারা তৈরির জন্য ;
শ্প্রে যন্ত্রপাতি: ঔযধ ও অন্যান্য সার দ্রবণ ছিটাননার জন্য এবং
বস্তা, টব, পলি প্যাকেট ঃ জৈেব সার ও পট মিশ্রণ রাখার জন্য।

চিত্র ১০৮ : সার প্রয়োগের যন্ত্রপাতি।

তথ্যপঞ্জি

TISDALE, S.L.; NELSON. W. L. AND BEATON, J.D. 1985 Soil fertility and fertilizers. 4th. ed. MacMillan Publishing Company. New York.
ANNUAL REPORTS (1985-94) BARI. BRRI. BJRI. SRTI, BINA. BARC. Dhaki.

KEMMLER, G. AND TANDON. H. L. S. 1988. Potassium Deficiency and its Correction in Horticultural Crop. Int. Potash Institiute and FDCO, India, New Delhi

STATISTICAL POCKET BOOK 1995, Bangladesh Burcau of Statistics. Govt. of Bangladesh.

HESSAYON, D.G. 1988. The Rose Erpert. Publications Britanica House. England.
UPLB. 1978 The Philippines Recommends for Soil Fertility Management PCARRD. Manila

BARI ICRIASAT 1991. Advances in Pubes Research in Bangladesh, Proc Ind National Workshop on Rulses.

TANDON, H.L.S1992. Fertiliurs, Organic Manmurs, Reardeble wasts and Biofertilits.. Fertilizer Development and Consultation Organization (FDCO) New Delhi. India.

TANDON, H. L. S 1992. Fertilizers Recommendation for Hoticultural Crops. FDCO. New Dolhi: India. BARC. 1989 Fertilizer Recommendation Guide Bangladesh Agricultural Reserch Council, Farmgate. Draka.
ইসলাম, এম. এস এবং आমিন, এম. এস. ১৯৮৮- সার ব্যবহার নির্দশিকা, ঢাকা।
आমিন, এস. এম ১৯৯০। বাংলাদেশ মৃত্তিকার পরিচিতি ও ব্যবशার/ ঢাকা।
आমিন এম. এস ১৯৯৬। পরিষেশ বিজ্ঞানঃ মৃত্তিক অণুজীব ও জিব সার। বাংলা একাভ্যেী, ঢাকग।

आমিন এম. এস. ১৯৯৬। পরিবেশ বিজ্ঞান : মৃত্তিকার 心ীত ধর্ম। বাললা একাডেমী, ঢাক।।
বিএ আর আই, ১৯৯৩। ভুট্টার উৎপাদন ও ব্যবহার। জয়দেবপ বিশ্বাস, এস. ১৯৮৩। সার তৈরি ও ব্যবহার। শশিমবঙ ভারত।
বি. আর সি. ১৯৯৫। কৃষিক্ষেে বাংলাদেশ পাটাম সারের

